# TruPlasma Highpulse 4002 NEW

(2000V; 1000A; 10kW; 10000Hz) Highpulse Power Supply

# **USER MANUAL**



### Warning!

This operating manual is required for the safe operation of **TruPlasma Highpulse 4000 NEW** Power Supplies. As a result, the operating manual should be kept close to the unit at all times.



# Operating Instructions for TruPlasma Highpulse Power Supply



TRUMPF Huettinger Sp. z o.o.

Marecka 47 05-220 Zielonka **Poland** Phone +48 22 7613-800 Fax. +48 22 7613-801 Info.Electronic@pl.trumpf.com

## TRUMPF

#### Headquarters

#### TRUMPF Hüttinger GmbH + Co. KG

Bötzinger Straße 80 79111 Freiburg **Germany** Phone +49 7618-971-0 Fax +49 7618-971-1150 Info.Elektronik@de.trumpf.com TRUMPF Huettinger Sp. z o.o.

Marecka 47 05-220 Zielonka **Poland** Phone +48 22 7613-800 Fax. +48 22 7613-801 Info.Electronic@pl.trumpf.com

#### TRUMPF Huettinger, Inc.

4000 Burton Dr. Santa Clara CA 95054 **USA** Phone: +1-408-454 1180 Fax: +1-408-454 1181 Info.Electronic@us.trumpf.com

TRUMPF Hüttinger (Shanghai) Co., Ltd.

Room 634, 6F, Shanghai Central Plaza No. 381 Huaihai Zhong Road 200020 Shanghai **China** Phone: +86 2161-71-9140 Fax: +86 2161-71-9141 Info.Electronic@cn.trumpf.com

#### TRUMPF Huettinger K.K.

4th Benex\_S3 Bd. 3-22-13 Shinyokohama, Kohoku-ku Yokohama, 222-0033 Japan TEL: +81 45 470-3761 FAX: +81 45 470-1077 Info.Electronic@jp.trumpf.com

#### © 2015, TRUMPF Huettinger.

All rights reserved. The purpose of this manual to enable the reader to install and safely operate the equipment described below. Making copies of any part of this manual for any other purposes than these is a violation of International as well as Polish copyright laws.

In the interests of providing superior equipment, TRUMPF Huettinger reserves the right to make product modifications without notifications or obligation. To the best of our knowledge the information contained in this manual is the most accurate available as of date of publishing.

#### © 2015, TRUMPF Huettinger.

To ensure years of dependable service, TRUMPF Huettinger products are thoroughly tested and found to be among the most reliable and highest quality systems available.

For Customer Service or Support, call:

TRUMPF Huettinger Sp. z o.o.Phone+48 22 7613-800Fax.+48 22 7613-801Service.Electronic@pl.trumpf.com

#### Service hotline:

| Poland:  | +48 662-249-000   |
|----------|-------------------|
| Germany: | +49 761 8971-2170 |

#### **Returning Units for Repair**

Before returning any product for adjustment or repairs please call **TRUMPF Huettinger Services** to discuss the problem with a service engineer representative. Be prepared to give the serial number of the unit and reason for return. This consultation call will help the Customer Service Department to determine if the unit needs to be returned. Such technical consultations are always available free of charge.



## Table of contents

|              |                                                            | Page |
|--------------|------------------------------------------------------------|------|
| 1.           | Safety Information                                         | 6    |
| 1.1.<br>1.2. | Important information<br>Explanation of symbols and notes  | 6    |
| 1.2.         | Personnel                                                  |      |
| 1.4.         | Safety standards profile                                   | 7    |
| 1.5.         | Transportation and storage                                 |      |
| 2.           | General information                                        |      |
| 2.1.         |                                                            |      |
| 3.           | Electrical and mechanical specifications                   | 12   |
| 3.1.         | Electrical and mechanical specification in tables          |      |
| 3.2.<br>3.3. | Environmental specification<br>Cooling water specification |      |
| 3.4.         | Compressed air specification                               |      |
| 3.5.         | TruPlasma Highpulse power characteristics                  |      |
| 4.           | Installation and connections                               | 19   |
| 4.1.         | Installation site                                          |      |
| 4.2.         | Fusing                                                     |      |
| 4.3.<br>4.4. | Connection terminals<br>Power terminals description        |      |
| 4.4.         | Cooling connectors description                             |      |
| 4.6.         | Communication terminals description                        |      |
| 4.7.         | RS-232 communication terminal                              | 23   |
| 4.8.         | Profibus communication terminal                            |      |
| 4.9.         | Analog control terminal                                    |      |
| 5.           | Arc management                                             |      |
| 6.           | Standard Operator Panel (SOP)                              | 29   |
| 6.1.         | LED description                                            |      |
| 6.2.         | Buzzer                                                     |      |
| 6.3.<br>6.4. | Screen saver<br>Menu structure                             |      |
| 6.5.         | Description of displayed data and settings                 |      |
| 7.           | Interfaces                                                 |      |
| 7.1.         | RS-232 transmission protocol description                   |      |
| 7.2.         | Profibus transmission protocol description                 |      |
| 8.           | Warning and alarm messages                                 | 80   |
| 9.           | Interface software                                         | 82   |
| 9.1.         | PVD Power                                                  |      |
| 9.2.         | PVD Power oscilloscope                                     |      |
| 9.2.         | Terms and conditions for the licensing of software         |      |
| 10.          | Scope of delivery                                          | 105  |

# 1. Safety Information

# 1.1. Important information

**TruPlasma Highpulse** generator is designed to power industrial vacuum process chambers in PVD surface treatment technologies. Any other uses or any uses beyond these mentioned above are considered to be improper. TRUMPF Huettinger Company shall not be held liable for any losses or damages resulting in any improper usage.

Correct usage also includes:

- Full compliance with all instructions from operating manual.
- Full adherence to inspection and maintenance intervals.



Safe operating procedures and proper equipment usage are the sole responsibilities of the system's user.

# 1.2. Explanation of symbols and notes



Failure to comply with these precautions may cause physical injury or result in damage of equipment.



Failure to comply with these warnings may result in death, serious physical injury or damaged equipment.



Failure to comply with this information can affect the generator's performance.



Useful notices and tips regarding proper handling, operation and maintenance.

# 1.3. Personnel

Only qualified personnel should work with the **TruPlasma Highpulse**. "Qualified" is defined as personnel who are familiar with the safe installation procedures, maintenance and operation.

All of the personnel working with this equipment must take appropriate precautions to protect themselves against the possibility of electrical shocks or fatal injuries. They must be familiar with the entire **TruPlasma Highpulse** operating instruction manual and understand all of its contents.



Do not be careless around this equipment!

# 1.4. Safety standards profile

The **TruPlasma Highpulse** Power Supply was designed and constructed in compliance with the requirements outlined in the following standards and EC directives:

#### Standards:

- EN 50178: 1997 "Electronic equipment for use in power installations"
- EN 60950-1: 2006 "Information technology equipment Safety Part 1: General requirements"
- EN 61000-6-2: 2005 "Electromagnetic compatibility (EMC) Part 6-2: Generic standards Immunity for industrial environments"
- EN 61000-6-4: 2007 "Electromagnetic compatibility (EMC) Part 6-4: Generic standards Emission standard for industrial environments"

#### EC directives:

9

- 2006/95/EC Low Voltage Directive Laws of Member States relating to Electrical Equipment designed for use within certain voltage limits.
- 2004/108/EC EMC Directive Laws of the Member States relating to electromagnetic compatibility and repealing Directive 89/336.



- Check external fuse value and grounding circuit before switching mains on.
- Never unscrew or remove rear terminals covers before switching mains off.



# 1.5. Transportation and storage

### Transportation

TruPlasma Highpulse system must be firmly secured and placed in a horizontal position.

## Storage

Storage environments should be dry, free of aggressive vapors and not exposed to temperatures from beyond the 1K4 class range – EN 50178 (i.e.: -25, +55°C). See table 'Environment'.



Before storage and transportation remove all cooling water residues from the generator by carefully blowing compressed air through the lines.

# 2. General information

## Description

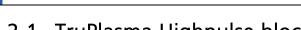
The **TruPlasma Highpulse** power supply is designed for powering sputtering cathodes in PVD surface treatment technologies. It's most important features are:

- high efficiency switched-mode power conversion performance,
- up to 2000V operating output voltage,
- full output power capability at an output voltage as low as 400V,
- ultrafast arc switch-off and recovery,
- extremely low arc energy,
- wide variety of user adjustable parameters,

The **TruPlasma Highpulse** power supply is assembled in one industrial steel enclosure ready to insert into a 19" rack power system. All cable ends and electric terminals for user connections are located at the rear of the module.

#### Microprocessor

Power supply is microprocessor-controlled. All control-signal connections are digitally and opto-isolated providing high resistance against electromagnetic disturbances.


## Interfaces

A multi-control system gives user a possibility of selecting from a variety of control sources.

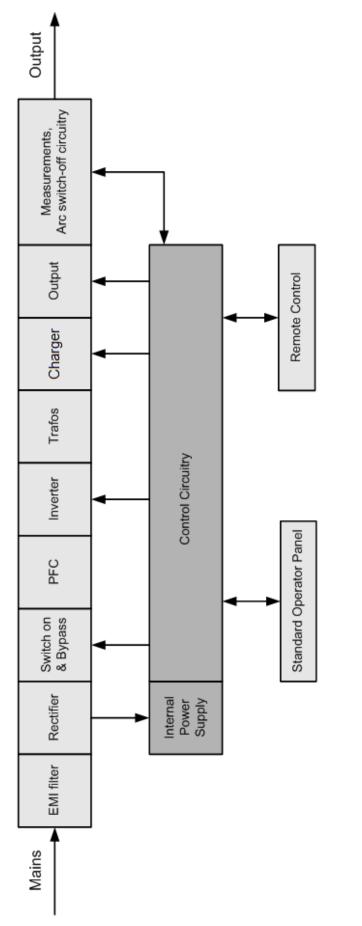
Depending on configuration, there are available:

- Local: Standard Operator Panel located on the front panel of the **TruPlasma Highpulse**,
- Remote: RS-232,
- Remote: Profibus,





2.1. TruPlasma Highpulse block diagram


A block diagram of the TruPlasma Highpulse consists of the following functional blocks:

- input EMI filter to reduce electromagnetic interferences delivered to mains,
- three-phase rectifier,

TRUMPF

- circuit providing a soft switch-on,
- power factor correction circuit,
- MOSfet switch-mode DC/DC power converter,
- capacitor charging unit,
- output section,
- arc detection and arc switch-off circuitry,
- control electronics and LCD display panel (SOP).







# Operating Instructions for **TruPlasma Highpulse 4002 NEW** Power Supply Rev. 5.1.13.2.WPH2.15.01

# 3. Electrical and mechanical specifications

# 3.1. Electrical and mechanical specification in tables

| Electrical specification – Overall |        |  |                                                                                                                   |  |  |
|------------------------------------|--------|--|-------------------------------------------------------------------------------------------------------------------|--|--|
| Mains voltage                      | V AC   |  | 3x400-480±10% <b>+PE</b><br>It is recommended to maintain a power<br>quality according to EN 61000-2-4 (class 3). |  |  |
| Mains frequency                    | Hz     |  | 50/60 (range: 47 to 63)                                                                                           |  |  |
| Maximum mains input current        | А      |  | 3 x 20                                                                                                            |  |  |
| Recommended fusing                 | А      |  | 3 x36, B-class                                                                                                    |  |  |
| Efficiency % Approximately 85%     |        |  |                                                                                                                   |  |  |
| Warm-up delay                      | second |  | < 5                                                                                                               |  |  |

| Electrical specification – Power supply section |                           |                                                      |                                                                                   |  |  |  |
|-------------------------------------------------|---------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
| Nominal output values                           | kW\<br>V<br>Α<br>µs<br>Hz | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |                                                                                   |  |  |  |
| Control source options                          |                           |                                                      | Local - Standard Operator Panel<br>Remote - RS-232<br>Remote - Profibus interface |  |  |  |
| Output control                                  |                           |                                                      | P – power control<br>U – voltage control<br>I – current control                   |  |  |  |

| Mechanical Specification                                                     |  |             |  |  |  |
|------------------------------------------------------------------------------|--|-------------|--|--|--|
| Size (Width x Height x Length)         mm         482 (19") x 356 (8U) x 683 |  |             |  |  |  |
| Weight                                                                       |  | Approx. 155 |  |  |  |

TruPlasma Highpulse 4000 NEW Series

|      | Arc detection criteria                                                                                  |        |  |                                                  |                          |  |  |
|------|---------------------------------------------------------------------------------------------------------|--------|--|--------------------------------------------------|--------------------------|--|--|
| Imax | Overcurrent detection<br>an arc is detected when output<br>current exceeds Imax threshold               | A      |  | user adjustable:<br>Imax threshold               | 10 120% ln               |  |  |
| Uxl  | Cross detection<br>an arc is detected when output<br>current exceeds Ix threshold<br>below Ux threshold | V<br>A |  | user adjustable:<br>Ux threshold<br>Ix threshold | 0 100% Un,<br>10 100% In |  |  |
|      | Maximum amount of detected and suppressed arcs per second                                               |        |  | 10000                                            |                          |  |  |

# 3.2. Environmental specification

| Environmental Specification   |             |  |                                                                                                 |  |  |  |
|-------------------------------|-------------|--|-------------------------------------------------------------------------------------------------|--|--|--|
| Ambient operating temperature | °C<br>°F    |  | +5 +45 (Class 3K3, EN 50178)<br>+41+113                                                         |  |  |  |
| Storage temperature           | °C<br>°F    |  | -25 +55 (Class 1K4, EN 50178)<br>-13 +131                                                       |  |  |  |
| Relative humidity             | %<br>g/m³   |  | 585 Non-condensing<br>125 (Class 3K3, EN 50178)                                                 |  |  |  |
| Air pressure                  | kPa<br>mbar |  | 86-106 (Class 3K3, EN 50178)<br>860-1060 (max altitude: approximately<br>2000m above sea level) |  |  |  |
| Degree of Pollution           |             |  | 2 (see chapter 4.1. Installation site: contamination)                                           |  |  |  |

# 3.3. Cooling water specification

| Cooling water parameters              |                                                                        |             |  |  |
|---------------------------------------|------------------------------------------------------------------------|-------------|--|--|
| Temperature                           | <b>°C</b> +20 to +35<br>The temperature must be higher than dew point. |             |  |  |
| Pressure                              | bar                                                                    | < 7         |  |  |
| Differential pressure input to output | bar                                                                    | > 3         |  |  |
| Flow rate                             | l/min                                                                  | > 12        |  |  |
| Flow rate in standby mode             | l/min                                                                  | 1 2         |  |  |
| Conductivity                          | μS/cm                                                                  | 50 600      |  |  |
| Protection class IP                   |                                                                        | IP40        |  |  |
| Total Hardness                        | Max Ph-Value                                                           |             |  |  |
| 8 °dH                                 |                                                                        | 7.8         |  |  |
| 6 °dH                                 |                                                                        | 8.1         |  |  |
| 4 °dH                                 |                                                                        | 8.3         |  |  |
| Description                           |                                                                        | Limit Value |  |  |
| Aggressive carbonic acid              | must not be detected                                                   |             |  |  |
| Ammonia                               | must not be detected                                                   |             |  |  |
| Nitrite                               | < 1 mg/l                                                               |             |  |  |
| Iron                                  | < 0.3 m                                                                | ng/l        |  |  |

TruPlasma Highpulse 4000 NEW Series

| Cooling water parameters                                                   |                                   |  |  |  |  |
|----------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
| Manganese                                                                  | < 0.05 mg/l                       |  |  |  |  |
| Sulfate                                                                    | < 250 mg/l                        |  |  |  |  |
| Chloride                                                                   | < 250 mg/l                        |  |  |  |  |
| COD (chemical oxygen demand)                                               | < 40 mg/l                         |  |  |  |  |
| Microbiologic growth:<br>- number of colonies<br>- sulfate reducing agents | < 1000/ml<br>must not be detected |  |  |  |  |



Min. 11/min of cooling water is required in standby mode. If the minimal water flow for standby mode cannot be provided, mains must be switched off.

# 3.4. Compressed air specification

To avoid problems with humidity condensation it is recommended to connect the compressed air to the dedicated terminal in the power supply. It is especially important when generator operates in tropical areas with high humidity.

The condensed water could lead to internal short circuits and finally to damage of the power supply.

Moreover to prevent water condensation, connect compressed air 60 minutes before usage.

| (                  | Quality class according<br>to ISO 8573-1 |                                                         |   |
|--------------------|------------------------------------------|---------------------------------------------------------|---|
| Pressure           | bar                                      | 0.1 0.2                                                 |   |
| Pressure dew point | °C                                       | max. +3<br>(see the next page for dew point<br>diagram) | 4 |
| Oil content        | mg/m³                                    | < 0.1                                                   | 2 |
| Dust-free          |                                          | Acc. to Tab. 2 ISO 8573-1/2001                          | 2 |

The table with air quality parameters with references to ISO 8573-1/2010 standard below:

Compressed air connector is placed on the rear side of the generator (see chapter 4.3. *Connection terminals* and chapter 4.5. *Cooling terminals descriptions*).



While installing the power supply in the IP4x rack cabinet the compressed air may be supplied to the cabinet, instead of direct supplying each unit, with the flow rate of 120 l/h.

| Compressed air flow rate                                             |       |  |   |  |  |  |
|----------------------------------------------------------------------|-------|--|---|--|--|--|
| Single power supply (i.e. rack cabinet IP00) <i>I/min</i> Approx. 22 |       |  |   |  |  |  |
| Rack cabinet (at least IP40)                                         | l/min |  | 2 |  |  |  |



# To prevent water condensation, connect compressed air 60 minutes before usage.

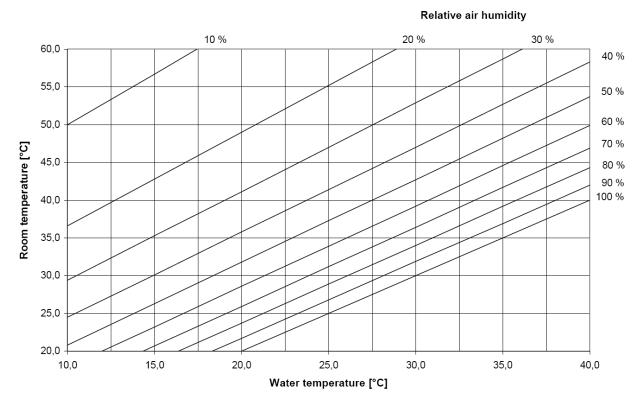



Fig. 3.1. Dew point diagram.

The dew point diagram has been created with an assumed air pressure of 1013 mbar.



# 3.5. TruPlasma Highpulse power characteristics

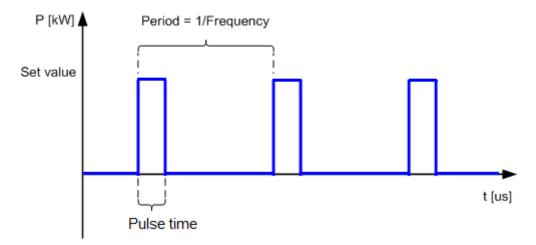



Fig. 3.2. Output characteristics of TruPlasma Highpulse module.

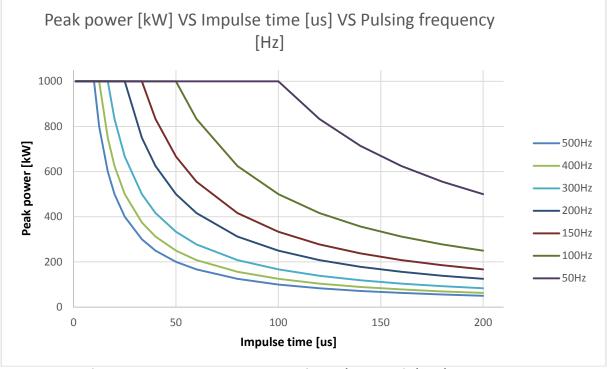



Fig. 3.3. Power characteristics of TruPlasma Highpulse module.



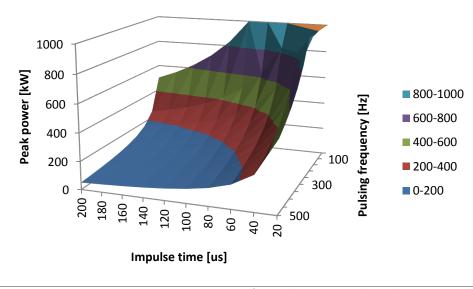



Fig. 3.4. Full power characteristics of TruPlasma Highpulse module.

# 4. Installation and connections

# 4.1. Installation site

## Enclosure

**TruPlasma Highpulse** power supply is built in a standard 19" enclosure and is designed to fit into a standard 19", 800mm deep, rack cabinet. Weight of device is approx. 155kg and mechanical construction of cabinet should be strong enough to support it. Temperature inside cabinet should not exceed 45°C measured at front panel of module.

Special lifting eyes (4 pieces) for lifting and moving are attached to TruPlasma Highpulse.

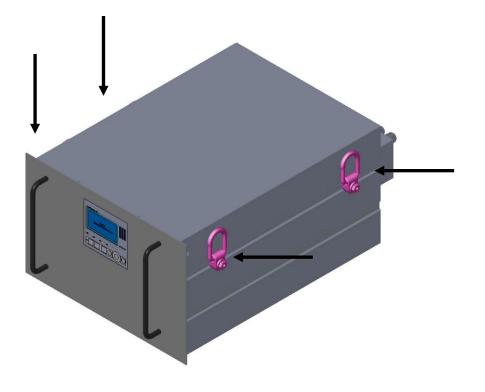



Fig. 4.1. TruPlasma Highpulse with lifting eyes.



**HEAVY OBJECT.** May result in severe injury. Do not lift or move without adequate equipment. Weight 155kg.

## Contamination

Cooling air should be kept free from corrosive vapors and any particles that could become conductive after exposure to moisture.

# Unpacking

Inspect the devices packaging for damage and compare its contents carefully with delivery documents.

# 4.2. Fusing

External mains fuses are highly recommended with respect to EN61010-1 standard. A set of three-phase 36A B-class fuses will provide necessary protection.

A set of fuses has to be provided for each power supply separately, even if it works in parallel or synchronous mode.

Usage of circuit breakers with the same tripping characteristic and rated current instead of fuses is also possible.

# 4.3. Connection terminals

TRUMPF

All connection terminals are located on rear side of **TruPlasma Highpulse**. Output terminals should be covered by cap delivered with the device. Sufficient space for cables should be provided (at least ½U) between modules installed together inside one cabinet.

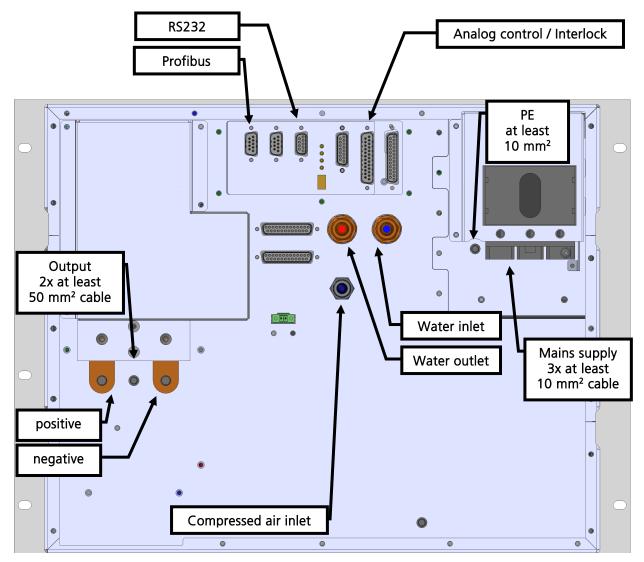



Fig. 4.2. Description of connectors and terminals on the rear panel.



Check inlet and outlet water connection. Changing water flow direction will cause power supply's malfunction!



To prevent water condensation, connect compressed air 60 minutes before usage.

# 4.4. Power terminals description

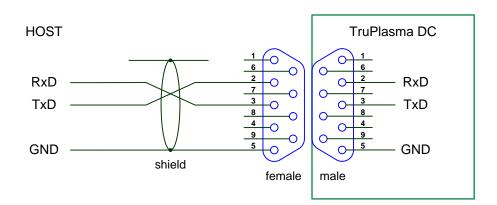
| Terminal | Description             | Cable                                                                                                                                                         | Cable endings |
|----------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| MAINS    | 3 x 400-480 V AC        | 3x min. 10mm <sup>2</sup>                                                                                                                                     | 3x ferrule    |
| PE       | Protective earth        | min. 10 mm <sup>2</sup>                                                                                                                                       | M6            |
| OUTPUT   | 2000V / 1000A<br>(peak) | 2x min. 50 mm <sup>2</sup> twisted on entire length<br>and shielded (shield connected to<br>ground from chamber side) high voltage<br>(preferably 3kV) cable. | 2x M8         |



Do NOT turn on unit's power until the power supply is properly grounded!

# 4.5. Cooling connectors description

| Terminal                | Description                           | Hose ending                                                                                                      |  |
|-------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| Water inlet             | Stainless steel or polyurethane (PU)  | ø 10 mm                                                                                                          |  |
| Water outlet            | Stanliess steel of polytretilane (FO) | (quick connect adaptors are attached)                                                                            |  |
| Compressed<br>air inlet | Polyurethane (PU)                     | Ø 8 mm<br>(quick connect adaptor with <sup>1</sup> / <sub>8</sub> " external<br>thread and stopper are attached) |  |


# 4.6. Communication terminals description

| Terminal                | Description                      | Connection | Cable endings     |  |
|-------------------------|----------------------------------|------------|-------------------|--|
| Profibus                | communication port               | see below  | SUBD 9pin male    |  |
| RS-485                  | not used in this application     |            | n/a               |  |
| RS-232                  | communication port               | see below  | SUBD 9pin female  |  |
| Digital<br>input/output | not used in this application     |            | n/a               |  |
| Scalo control           |                                  |            |                   |  |
| Analog control          | analog interface                 | see below  | SUBD 25pin female |  |
| Pulse control           | not used in this application     |            | n/a               |  |
| DeviceNet               | not used in this application n/a |            |                   |  |
| External Bus            | not used in this application n/a |            |                   |  |

# 4.7. RS-232 communication terminal

RS-232 port is located on the rear side of device and uses a 9-pin male SUBD connector. Table below provides description of pins.

| Pin no. | Name      | Туре           | Description                          |
|---------|-----------|----------------|--------------------------------------|
| 2       | RxD       | digital input  | RS-232 receives data                 |
| 3       | TxD       | digital output | RS-232 transmits data                |
| 5       | 5 GND GND |                | Ground, can be used for cable shield |
| others  | -         | n/c            | n/c                                  |







Do NOT connect the shield with earth (PE).

RS-232 communication baud rate can be set from the range: 9600, 19200, 38400, 57600 and 115200 bps, and it works in standard 8n1 (8 bits of data, non parity, 1 bit of stop).

Default baud rate is 115200 bps.





Profibus port is located on the rear side of device and uses a 9-pin female SUBD connector. Table below provides description of pins.

| Pin no. | Name                    | Туре        | Description                      |
|---------|-------------------------|-------------|----------------------------------|
| 3       | RxD/TxD-P               | Digital I/O | Differential I/O signal          |
| 5       | DGND                    | GND         | Isolated Profibus ground         |
| 6       | 6 <b>VP</b> +5V DC      |             | Isolated Profibus supply voltage |
| 8       | 8 RxD/TxD-N Digital I/O |             | Differential I/O signal          |
| others  | -                       | n/c         | n/c                              |

Termination resistors are necessary only at both ends of the cable.

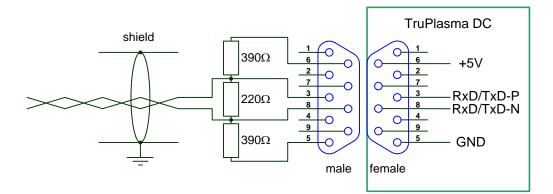



Fig. 4.5. Profibus connection diagram.

# 4.9. Analog control terminal

Analog control connector is located on the rear side of device and uses a 25-pin male SUBD connector. Table below provides description of pins.

| Pin no. | Name         | Туре                                                          |                                                                                                                                                                                                                                     |               | Description                                                                                                       |
|---------|--------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------|
| 1       | U act        | Analog output                                                 | 010 V against GND represents 02000 V output voltage                                                                                                                                                                                 |               |                                                                                                                   |
| 2       | l act        | Analog output                                                 | 010 V against GND represents 01000 A output current                                                                                                                                                                                 |               |                                                                                                                   |
| 3       | P act        | Analog output                                                 | 010 V against GND represents 010 kW output power                                                                                                                                                                                    |               |                                                                                                                   |
| 14      | Set Value    | Analog Input                                                  | RegSel0                                                                                                                                                                                                                             | RegSel1       | Control Mode                                                                                                      |
|         |              | Depending on the<br><b>RegSel</b> setting<br>(pins 10 and 11) | Low                                                                                                                                                                                                                                 | Low           | <b>Power control</b> . 010V at input represents 010 kW power setting                                              |
|         |              | one of four<br>control modes<br>can be selected               | Low                                                                                                                                                                                                                                 | High          | <b>Voltage control</b> . 010V at input represents 02000 V voltage setting                                         |
|         |              |                                                               | High                                                                                                                                                                                                                                | Low           | <b>Current control</b> . 010V at input represents 01000 A current setting                                         |
| 4, 17   | GND          | Ground                                                        | Reference g                                                                                                                                                                                                                         | round for all | analog signals.                                                                                                   |
| 5, 18   | GND          | Ground                                                        | Reference g                                                                                                                                                                                                                         | round for all | digital signals.                                                                                                  |
| 8       | Power ON     | Digital Input                                                 | power relay                                                                                                                                                                                                                         | s and prepar  | V to 24V in order to switch on the internal<br>e unit for operation. Interlock loop must be<br>e must be present. |
| 9       | Release      | Digital Input                                                 | Connect to 24V in order to provide power to output terminals when the internal power relays are switched on (PowerON input is active).                                                                                              |               |                                                                                                                   |
| 10, 11  | Reg Sel      | Digital Inputs                                                | <b>Control mode selector</b> : RegSel1 (pin 10) and RegSel0 (pin11)<br>High = Connected to 24V; Low = Connected to GND or open. See<br>description for pin 14 (Set Value)                                                           |               |                                                                                                                   |
| 12      | Interlock    | Digital input                                                 | Interlock must be disabled (connected to +24V, pin 19) to enable power supply switch-ON. This is a relay-based hardware connection.                                                                                                 |               |                                                                                                                   |
| 19      | +24V         | Supply output                                                 | 24V supply for all digital inputs.                                                                                                                                                                                                  |               |                                                                                                                   |
| 6       | Coll.        | Digital output<br>(isolated)                                  | All optocoupler collectors are connected to this common pin.<br>Max. voltage between this pin and the remaining isolated digital<br>outputs must not exceed 30V.                                                                    |               |                                                                                                                   |
| 21      | No FaultInd. | Digital output<br>(isolated)                                  | that the uni                                                                                                                                                                                                                        | t is powered  | age from pin 6 is coupled to this pin to show,<br>up and no alarms are active. Maximum pin<br>n current is 10mA.  |
| 22      | PowerONind   | Digital output<br>(isolated)                                  | Voltage from pin 6 is coupled to this pin to show, that the unit is running. Maximum pin voltage is 30V. Maximum current is 10mA.                                                                                                   |               |                                                                                                                   |
| 24      | NVR          | Digital output<br>(isolated)                                  | Nominal Value Reached. Voltage from pin 6 is coupled to this pin to show, that the output parameter is within 5% of its set value or nominal output value . Maximum pin voltage is 30V. Maximum current is 10mA.                    |               |                                                                                                                   |
| 7       | Arc Occurs   | Digital output                                                | Voltage from pin 6 is coupled to this pin for ca. 20ms to show that an arc has occurred. These signals are not synchronized with the actual arc occurrence (50 - 500ms time shift). The number of "blinks" show the number of arcs. |               |                                                                                                                   |
| 13, 25  | Alarm        | Digital output                                                |                                                                                                                                                                                                                                     |               | re shortened when the unit is powered up and laximum load is 30V, 0.5A.                                           |



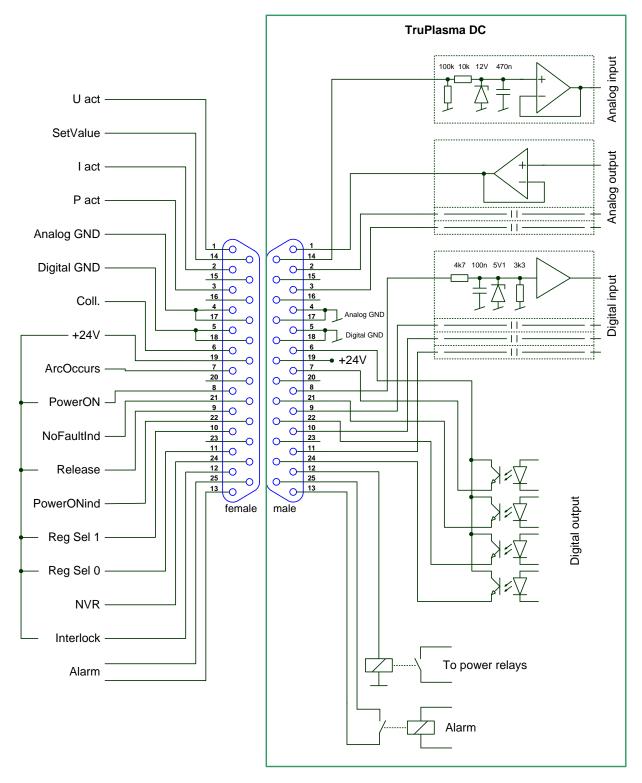



Fig. 4.7. Analog control connection and circuit diagram.



# 5. Arc management

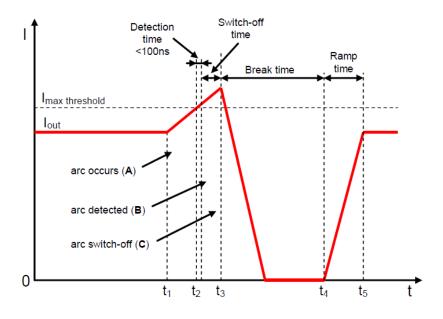
Electric arcs, observed inside vacuum chamber during all stages of surface treatment process may affect treated surface in a negative manner. In such events arcs should be suppressed as fast as possible. From an electrical point of view, arc occurrence is defined as a rapid change of impedance in chamber's electric terminals.

TruPlasma Highpulse arc detection system is equipped with two kinds of arc detection criteria:

**Imax** – current-based detector – reacts when output current exceeds user defined Imax threshold

**UxI** – voltage and current-based detector (cross-detector) – reacts when output voltage is lower than user-defined Ux threshold, while current is higher than user-defined Ix threshold

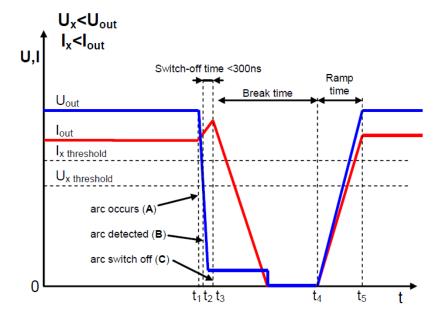
Notes:


- In TruPlasma Highpulse maximum frequency of detected and suppressed arcs can be as high as 1kHz.

Number of detected arcs is displayed by the front panel display or can be read from communication interface with respect to the criteria which detects an arc.

Once an arc has been detected shut-down signal is activated and output power is switched off until the time the next pulse occurs.

#### lmax


reacts when output current exceeds user defined Imax threshold



Imax threshold – defined by the user Break time – not applicable for TruPlasma Highpulse Ramp time – not applicable for TruPlasma Highpulse Uxl



reacts when output voltage is lower than user-defined Ux threshold, while current is higher than user-defined Ix threshold



Ix threshold – defined by the user Ux threshold – defined by the user Break time – not applicable for TruPlasma Highpulse Ramp time – not applicable for TruPlasma Highpulse

# 6. Standard Operator Panel (SOP)

# 6.1. LED description

To increase interactive between customer and device, the Standard Operator Panel has the LED indicators. Even if user is remote from Power Supply, he can check most important process indicators and quickly respond. SOP has two kinds of LED indicators. First group are single LEDs which are corresponding to most important process events, for example: alarm, turn on, arc occur, etc. Second group are bar graphs which indicates levels for most important parameters, for example: actual voltage, actual power, etc. Following table shows LED indicators used in SOP:



| Function name       | Color  | Description                                                                   |
|---------------------|--------|-------------------------------------------------------------------------------|
| Standby             | yellow | Power supply is powered, but not yet switched-on.                             |
| ON                  | green  | Power supply is running.                                                      |
| Interlock           | yellow | Interlock or door-closed detection circuits are open.                         |
| Arc occ             | yellow | Blinks after an arc is detected.                                              |
| Alarm               | red    | Blinks when critical conditions occur. Audible signal/beep is also activated. |
| Reg U               | white  | Indicates that voltage regulator is currently active.                         |
| Reg I               | white  | Indicates that current regulator is currently active.                         |
| Reg P               | white  | Indicates that power regulator is currently active.                           |
| Bar Graph – Voltage | white  | Level of actual peak output voltage.                                          |
| Bar Graph – Current | white  | Level of actual peak output current.                                          |
| Bar Graph – Power   | white  | Level of actual peak output power.                                            |



# 6.2. Buzzer

To inform about warning or error events, the Standard Operator Panel has the buzzer. Beep signal is linked to Alarm LED signal. Buzzer became active when warning or alarm state occurs. It remains active until the user presses any button or resets alarms.

# 6.3. Screen saver

Standard Operator Panel has screen saver option which duration time is adjustable in menu. The user can either enable or disable screen saver by menu. The principle of screen saver is turn off the display backlight when is not any activity for some time in the device navigation.

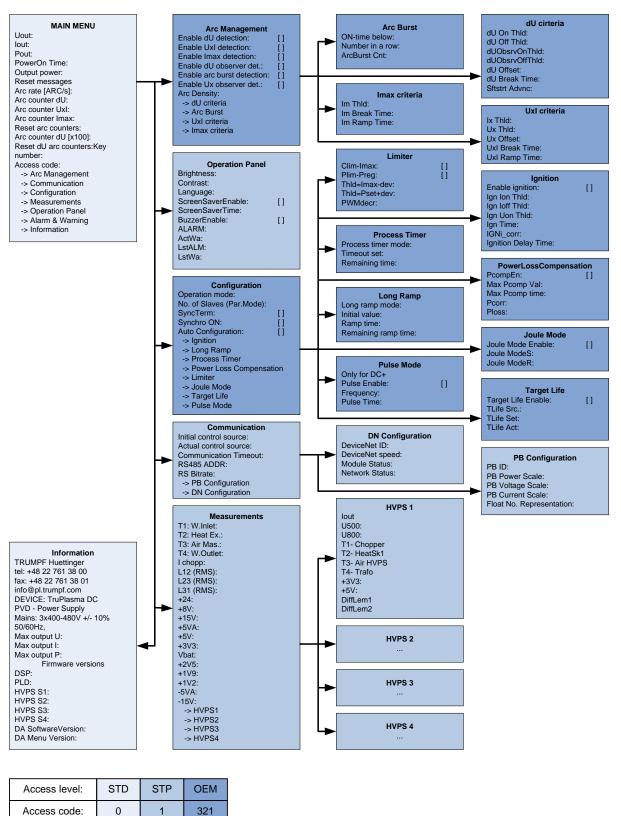
## 6.4. Menu structure

Display interface has graphic and text areas:

• Text area consists of six text lines at twenty characters showing the process parameters (see below).

| Δ                |      | ₽    |   |      |    |
|------------------|------|------|---|------|----|
| <u>Main Menu</u> |      |      |   |      |    |
| Pout             | =    | 20.0 | / | 18.1 | k₩ |
| >Uout            | =    | 680  | / | 697  | V< |
| Iout             | =    | 29.6 | / | 26.6 | А  |
| ALARM:           |      |      | 1 | NONE |    |
| dU counter: (    |      |      |   | )    |    |
| UxI counter: 0   |      |      | ) |      |    |
| Imax count       | cer: |      |   | (    | C  |

 Graphic area consists of pictograms (see below). Those are small figures placed on the top of display. They are responsible for indicating the most important events for the process, for example: power on, warning or fault, etc.


| Pictogram | Description                                       |  |  |  |  |
|-----------|---------------------------------------------------|--|--|--|--|
| 4         | Output power released                             |  |  |  |  |
|           | Display control                                   |  |  |  |  |
|           | RS-232/485 control                                |  |  |  |  |
|           | Profibus control                                  |  |  |  |  |
| $\otimes$ | DeviceNet control                                 |  |  |  |  |
| ŧ         | EtherCAT control                                  |  |  |  |  |
|           | Analog control                                    |  |  |  |  |
| Δ         | Warning                                           |  |  |  |  |
| 8         | Alarm                                             |  |  |  |  |
|           | Unit works as a Master in parallel operation mode |  |  |  |  |
| 봅         | Unit works as a Slave in parallel operation mode  |  |  |  |  |
| <b>v</b>  | NVR – Nearest Value Reached                       |  |  |  |  |
| - Fe      | Power long ramp                                   |  |  |  |  |
| <b>7</b>  | Current long ramp                                 |  |  |  |  |
| G         | Output timer active                               |  |  |  |  |
| Ô         | End of output timer                               |  |  |  |  |
| ~         | Ready                                             |  |  |  |  |
|           | Wait, not ready                                   |  |  |  |  |
|           | OEM access mode                                   |  |  |  |  |
| ¶<br>∦    | STP access mode                                   |  |  |  |  |

Principle of menu navigation is use four switches (Menu, Enter, Up, Down). Menu of SOP has sub menu (three levels) structure. At the beginning of device operation the SOP display main page. The user can either choose parameters or sub menu on page by pressing Up or Down button and select it by Enter button. Each press Menu button brings user to upper level of menu structure.

ON and OFF buttons allow quick switching power on and off.

#### TRUMPF

#### TruPlasma Highpulse 4000 NEW Series



#### Fig.7.1. Standard Operator Panel menu structure.

# 6.5. Description of displayed data and settings

## MAIN MENU – Basic controls and readouts

| Display                                    | Modif. | Description                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| >Uout= 680 / 679V <                        | Yes    | Voltage regulator setting (first number) and actual power supply's output voltage readout (second number).                                                                                                                                                                                                  |
| >Iout= 25.0 / 24.5A <                      | Yes    | Current regulator setting (first number) and actual power supply's output current readout (second number).                                                                                                                                                                                                  |
| >Pout= 20.0 /16.6kW <                      | Yes    | Power regulator setting (first number) and actual power supply's output power readout (second number).                                                                                                                                                                                                      |
| <pre>&gt;PowerOnTime: hh:mm.ss &lt;</pre>  | No     | Time elapsed from last switching power on.                                                                                                                                                                                                                                                                  |
| >Output power: ON <                        | Yes    | If control mode is set to DISPLAY panel, power supply can be switched on.                                                                                                                                                                                                                                   |
| > Reset messages <                         | Yes    | Reset occurred alarms, warnings.                                                                                                                                                                                                                                                                            |
| Arc rate [ARC/s]: 0/s                      | No     | Arc frequency.                                                                                                                                                                                                                                                                                              |
| Arc counter UxI: 0                         | No     | Number of arcs detected by Uxl criterion, which occurred since last counter reset (max 65535).                                                                                                                                                                                                              |
| Arc counter Imax: 0                        | No     | Number of arcs detected by Imax criterion, which occurred since last counter reset (max 65535).                                                                                                                                                                                                             |
| >Reset arc counters: NO<                   | Yes    | Reset arc counters. If dU counter(x100) is full, then counter will also be reset.                                                                                                                                                                                                                           |
| <pre>&gt;Reset dU arc counters: &lt;</pre> | Yes    | Reset dU arc x100 counter.                                                                                                                                                                                                                                                                                  |
| Key number: 123                            | No     | Parameter for OEM access code generating.                                                                                                                                                                                                                                                                   |
| >Access code: STD <                        | Yes    | Entering proper access code following menus are<br>accessable:<br>-> Arc Management OEM<br>-> Communication OEM<br>-> Configuration STP<br>-> Measurements STP<br>-> Regulators SRV<br>-> Operation Panel STP<br>-> Alarm & Warning STD<br>-> Information STD<br>Access codes: STD – 0; STP – 1; OEM – 321. |

Annotations:

- ON and OFF buttons at operator panel allow quick switching power on and off

## Arc Management

| Display                            | Modif. | Description                                                                                                                                                                                                                                         |
|------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| >Enable UxI detection <            | Yes    | Enables or disables UxI detection criterion.                                                                                                                                                                                                        |
| >Enable Imax detection <           | Yes    | Enables or disables Imax detection criterion.                                                                                                                                                                                                       |
| >Enable arc burst<br>detection <   | Yes    | Enables or disables Arc Burst detector.                                                                                                                                                                                                             |
| >Enable Ux observer<br>detection < | Yes    | Enables or disables Ux observer detection criterion.                                                                                                                                                                                                |
| >Arc Density 2000 <                | Yes    | Threshold for "TooManyArcs" alarms. If number of<br>arcs per second is higher this threshold, Power Supply<br>will generate alarm and switch off power on output.<br>Alarm is activated if Arc Density parameter is different<br>than 0.<br>[08000] |
| -> UxI criteria                    | -      |                                                                                                                                                                                                                                                     |
| -> Imax criteria                   | -      | Submenus. See below.                                                                                                                                                                                                                                |

## Arc Management -> Imax criteria

| Display   |          | Modif. | Description                                                       |
|-----------|----------|--------|-------------------------------------------------------------------|
| >Im Thld: | 85.5 A < | Yes    | Current threshold value for Imax detection criterion.<br>[15195A] |

#### Arc Management -> Uxl criteria

| Display   |          | Modif. | Description                                                        |
|-----------|----------|--------|--------------------------------------------------------------------|
| >Ix Thld: | 13.0 A < | Yes    | Current threshold value for UxI detection criterion.<br>[7.5 150A] |
| >Ux Thld: | 259 V <  | Yes    | Voltage threshold value for UxI detection criterion.<br>[0900V]    |

## **Communication**

| Display                                           | Modif. | Description                                                                                      |
|---------------------------------------------------|--------|--------------------------------------------------------------------------------------------------|
| >Initial control source:<br>RS232 <               | Yes    | Initial control source after reboot:<br>DISPLAY, ANALOG, RS232, PROFIBUS, RS485 or<br>DeviceNet. |
| >Actual control source:<br>RS232 <                | Yes    | Control source of the power supply:<br>DISPLAY, ANALOG, RS232, PROFIBUS, RS485 or<br>DeviceNet.  |
| <pre>&gt;Communication Timeout:<br/>3s &lt;</pre> | Yes    | Delay time for communication lost alarm generating.<br>[065s]                                    |

TruPlasma Highpulse 4000 NEW Series

| Displa       | ıy     |   | Modif. | Description                    |                                                 |
|--------------|--------|---|--------|--------------------------------|-------------------------------------------------|
| >RS485 ADDR= | 255    | < | Yes    | RS485 address                  | [065535]                                        |
| >RS Bitrate: | 115200 | < | Yes    | Baud rate for RS communication | [9600,<br>19200,<br>38400,<br>57600,<br>115200] |

## **Configuration**

| Display         | Modif. | Description                   |
|-----------------|--------|-------------------------------|
| >Ppeak Max:<    | Yes    | Maximum peak power            |
| >Ignition En<   | Yes    | Enables or disables Ignition. |
| > Ign Max Time< | Yes    | Maximum ignition time         |
| > CLC En<       | Yes    | CLC after each pulse          |
| > CLC Arc En<   | Yes    | CLC only after arc occurs     |

### **Measurements**

| Displ                  | ау        | Modif. | Description                                              |
|------------------------|-----------|--------|----------------------------------------------------------|
| T1:W. Inle             | t= 24.6°C | No     | Temperature of inlet water.                              |
| T2: Air Ma             | s =24.6°C | No     | Temperature of heat exchanger.                           |
| T3: Heat E             | x.=24.6°C | No     | Temperature of air at control PCB.                       |
| T4:W.Outle             | t= 24.6°C | No     | Temperature of outlet water.                             |
| L12 (RMS)              |           | No     | Mains actual RMS voltage, phases 1-2.                    |
| L23 (RMS)              |           | No     | Mains actual RMS voltage, phases 2-3.                    |
| L31 (RMS)              |           | No     | Mains actual RMS voltage, phases 3-1.                    |
| +24V:                  | 24.0 V    | No     | Internal power supply output voltage.                    |
| +8V:                   | 8.0 V     |        |                                                          |
| +15V:                  | 15.0 V    |        |                                                          |
| +5V:                   | 5.0 V     |        |                                                          |
| +3V3:                  | 3.3 V     |        |                                                          |
| +Vbat:                 | 3.3 V     |        | Internal supply voltage.                                 |
| +2V5:                  | 2.5 V     |        |                                                          |
| +1V9:                  | 1.9 V     |        |                                                          |
| +1V2:                  | 1.2 V     |        |                                                          |
| -15V:                  | -15.0 V   |        |                                                          |
| -> HVPS 1<br>-> HVPS 2 |           | -      | Sub-menus. Readouts of measurements at internal modules. |



#### TruPlasma Highpulse 4000 NEW Series

| -> HVPS 3<br>-> HVPS 4 |  |
|------------------------|--|
|                        |  |

#### Measurements -> HVPS 1...4

| Display        |          | Modif. | Description                             |
|----------------|----------|--------|-----------------------------------------|
| Iout           | 10.0 A   | No     | Output current of HVPS unit.            |
| U500:          | 555 V    | No     | Rectified mains voltage.                |
| U800:          | 800 V    | No     | Inverter supply voltage.                |
| T1-Tran Chop = | = 24.6°C | No     | Temperature of output chopper.          |
| T2-HeatSk1 =   | 24.6°C   | No     | Temperature of heatsink.                |
| T3-Air HVPS=   | 24.6°C   | No     | Temperature of air at control PCB.      |
| T4-Trafo=      | 24.6°C   | No     | Temperature of main transformer.        |
| +3V3           | 3.37 V   | No     |                                         |
| +5V            | 5.03 V   | No     | Internal supply voltage.                |
| DiffLem1       | 0.0 A    | No     | Internal sections differential current. |
| DiffLem2       | 0.0 A    | No     |                                         |

## **Operation Panel**

| Display                        | Modif. | Description                            |
|--------------------------------|--------|----------------------------------------|
| >Brightness = 90 % <           | Yes    | LCD screen brightness. [0100%]         |
|                                |        |                                        |
| >Contrast = 50 % <             | Yes    | LCD screen contrast. [0100%]           |
| >Language = English <          | Yes    | Not used. Default language is English. |
| > Enable Screen Saver <        | Yes    | Enables or disables screen saver.      |
| >Screen Saver<br>Time: 10 min< | Yes    | Screen saver delay time.<br>[160min]   |

# 7. Interfaces

# 7.1. RS-232 transmission protocol description

**TruPlasma Highpulse** acts as a slave device in the communication process. It never initiates any transmissions. Computer (PC) sends a command which is executed by **TruPlasma Highpulse** and a reply is generated (see note 1). Standard commands are shown below. Additional commands can be implemented if necessary. Default baud rate is set to 115200 bps. The RS communication works in standard 8n1 (8 bits of data, non parity, 1 bit of stop).

## Frame general description

Command:

| 0 | 1 | 2 | 3 | 4 | 5 | 6                | 7   |       |  |
|---|---|---|---|---|---|------------------|-----|-------|--|
|   | 1 |   | - |   | - | СMD <sub>н</sub> | -   |       |  |
|   |   |   |   |   |   |                  | ••• | LEN-2 |  |
|   |   |   |   |   |   |                  |     | CRCн  |  |

Reply:

| 0   | 1    | 2                | 3    | 4                | 5    | 6                | 7   | 8                | 9         |
|-----|------|------------------|------|------------------|------|------------------|-----|------------------|-----------|
| LEN | ~LEN | DST <sub>H</sub> | DST∟ | SRC <sub>H</sub> | SRC∟ | ACK <sup>H</sup> | ACK | CMD <sub>H</sub> | $CMD_{L}$ |
|     |      |                  |      |                  |      |                  |     | LEN-2            | LEN-1     |
|     |      |                  |      |                  |      |                  |     | CRCн             | CRC∟      |

Where: LEN, ~LEN: length and inverted length (byte, byte);

DST<sub>H</sub>, DST<sub>L</sub>: receiver number (word); - default value for RS232 is:

$$DST_{H} = 0xFF;$$

$$DST_{L} = 0xFF;$$

SRC<sub>H</sub>, SRC<sub>L</sub>: sender number (word); - default value for RS232 is:

$$SRC_{H} = 0x00;$$
  
 $SRC_{L} = 0x00;$ 

CMD<sub>H</sub>, CMD<sub>L</sub>:command code (word);CRC<sub>H</sub>, CRC<sub>L</sub>:checksum (word); - all bytes sum (without LEN and ~LEN );

ACK<sub>H</sub>, ACK<sub>L</sub>: reply code (word); ACK == 0x4000 => OK. ACK != 0x4000 => fault

## 6040 Normal run

### PC to unit:

| 0                   | 1    | 2                | 3    | 4                | 5    | 6    | 7    | 8-11                | 12-15               |
|---------------------|------|------------------|------|------------------|------|------|------|---------------------|---------------------|
| 0x17                | 0xE8 | DST <sub>H</sub> | DST∟ | SRC <sub>H</sub> | SRC∟ | 0x60 | 0x40 | Uset <sub>0-3</sub> | lset <sub>0-3</sub> |
| 16-19               |      | 21               | 22   |                  |      |      |      |                     |                     |
| Pset <sub>0-3</sub> | Bits | CRCн             | CRC∟ |                  |      |      |      |                     |                     |

#### Where:

| Uset (float) | Voltage setpoint [V] | $0U_nV$           |
|--------------|----------------------|-------------------|
| lset (float) | Current setpoint [A] | 0I <sub>n</sub> A |
| Pset (float) | Power setpoint [kW]  | $0P_n  kW$        |

#### Bits:

0: Mains relays ON (0  $\rightarrow$  1; slope sensitive), OFF (0)

- 1: Power ON (1), OFF (0)
- 2: Reset arc counters (0  $\rightarrow$  1; 1 transmission is sufficient)
- 3: Reset Alarms
- 4: -
- 5: RS controls the TruPlasma Highpulse unit (1), monitoring only (0)
- 6: -
- 7: Display Control (1)

**IMPORTANT**: When controlling **TruPlasma Highpulse** digitally, (by way of RS232) a command must be sent at least once every 3 seconds to keep power supply running. If, for any reason, transmission fails – an alarm "RS :NO CTRL" will appear after 4-5 seconds and power supply will be switched off.

#### unit reply to PC

| 0                   | 1                   | 2                   | 3                   | 4                 | 5                  | 6                 | 7                    | 8                     | 9                  |
|---------------------|---------------------|---------------------|---------------------|-------------------|--------------------|-------------------|----------------------|-----------------------|--------------------|
| 0x27                | 0xD8                | DSTн                | DST∟                | SRC <sub>H</sub>  | SRC∟               | ACK <sup>H</sup>  | ACK                  | CMDн                  | $CMD_{L}$          |
| 10-13               | 14-17               | 18-21               | 22-24               | 25-26             | 27-28              | 29-30             | 31-34                | 35-36                 | 37-38              |
| Uact <sub>0-3</sub> | lact <sub>0-3</sub> | Pact <sub>0-3</sub> | Bits <sub>0-2</sub> | lm <sub>0-1</sub> | Uxl <sub>0-1</sub> | dU <sub>0-1</sub> | Arc/s <sub>0-3</sub> | dUx100 <sub>0-1</sub> | CRC <sub>0-1</sub> |

Where:

| Uact (float) | Output average voltage [V] | $0U_n V$          |
|--------------|----------------------------|-------------------|
| lact (float) | Output average current [A] | 0I <sub>n</sub> A |
| Pact (float) | Output average power [kW]  | $0P_n  kW$        |

Bits0: Acknowledge bits.

- 0: Relays ON acknowledge (1), or OFF (0)
- 1: Power ON (1), INHIBIT (0)
- 2: Ramp active
- 3: Master Active (in parallel mode) or Pulse Mode ON (1) / OFF (0) (in **TruPlasma Highpulse+**)
- 4: Display control
- 5: Alarms to read.
- 6: RS232/485 control
- 7: Ready

Bits1: more acknowledge bits.

- 0: Interlock (1), no interlock (0)
- 1: OverTemp Bit: 1=Overtemp
- 2: PowerFail (1), power OK (0)
- 3: FPGA (1) OK (0)
- 4: EEprom Error (1), OK (0)
- 5: -
- 6: WarningActive (1), inactive (0).
- 7: AlarmActive (1), inactive (0).

Bits2: more acknowledge bits.

- 0: RegU ON (1), OFF (0)
- 1: RegI ON (1), OFF (0)
- 2: RegP ON (1), OFF (0)
- 3: Pcomp Active
- 4: EOJM
- 5: EOTL
- 6: EOPT
- 7: Arc occ.

| lm (integer)      | Arc counter (Imax criterion)      | 065535 |
|-------------------|-----------------------------------|--------|
| Uxl (integer)     | Arc counter (UxI criterion)       | 065535 |
| dU (integer)      | Arc counter (dU criterion)        | 065535 |
| Arc/s(float)      | Arcs per second counter           |        |
| dU[x100](integer) | Arc counter (dU criterion) [x100] | 010000 |

Other parameters can be accessed for reading or adjustment, through their channel numbers. Byte, integer and float values have separate channel number lists. Command strings for reading and setting these values together with channel lists are presented below.

## 6040 Normal run – for DC+

#### PC to unit:

| 0                   | 1    | 2                   | 3                    | 4                | 5    | 6    | 7    | 8-11                | 12-15               |
|---------------------|------|---------------------|----------------------|------------------|------|------|------|---------------------|---------------------|
| Ox1B                | 0xE4 | DST <sub>H</sub>    | DST∟                 | SRC <sub>H</sub> | SRC∟ | 0x60 | 0x40 | Uset <sub>0-3</sub> | lset <sub>0-3</sub> |
| 16-19               | 20   | 21-22               | 23-24                | 25               | 26   |      |      |                     |                     |
| Pset <sub>0-3</sub> | Bits | Fset <sub>0-1</sub> | RTset <sub>0-1</sub> | CRCн             | CRC∟ |      |      |                     |                     |

#### Where:

| Uset (float)   | Voltage setpoint [V]     | $0U_nV$             |
|----------------|--------------------------|---------------------|
| lset (float)   | Current setpoint [A]     | 0I <sub>n</sub> A   |
| Pset (float)   | Power setpoint [kW]      | 0…P <sub>n</sub> kW |
| Fset (uint16)  | Frequency setpoint [Hz]  | 2015000Hz           |
| PTset (uint16) | Pulse Time setpoint [us] | 1100us              |
|                |                          |                     |

#### Bits:

- 0: Mains relays ON (1), OFF (0)
- 1: Power ON (1), OFF (0)
- 2: Reset arc counters (1 transmission is sufficient)
- 3: Reset Alarms
- 4: -
- 5: RS controls the DC unit (1), monitoring only (0)
- 6: Pulse ON (1), OFF (0)
- 7: Display Control (1)

**IMPORTANT**: When controlling **TruPlasma Highpulse** digitally, (by way of RS232) a command must be sent at least once every 3 seconds to keep power supply running. If, for any reason, transmission fails – an alarm "RS :NO CTRL" will appear after 4-5 seconds and power supply will be switched off.

#### unit reply to PC

| 0                   | 1                   | 2                   | 3                   | 4                 | 5                  | 6                 | 7                    | 8                     | 9                  |
|---------------------|---------------------|---------------------|---------------------|-------------------|--------------------|-------------------|----------------------|-----------------------|--------------------|
| 0x27                | 0xD8                | DST <sub>H</sub>    | DST∟                | SRC <sub>H</sub>  | SRC∟               | ACK <sup>H</sup>  | ACK                  | CMD <sub>H</sub>      | $CMD_{L}$          |
| 10-13               | 14-17               | 18-21               | 22-24               | 25-26             | 27-28              | 29-30             | 31-34                | 35-36                 | 37-38              |
| Uact <sub>0-3</sub> | lact <sub>0-3</sub> | Pact <sub>0-3</sub> | Bits <sub>0-2</sub> | Im <sub>0-1</sub> | UxI <sub>0-1</sub> | dU <sub>0-1</sub> | Arc/s <sub>0-3</sub> | dUx100 <sub>0-1</sub> | CRC <sub>0-1</sub> |

#### Where:

| Uact (float) | Output average voltage [V] | 0U <sub>n</sub> V  |
|--------------|----------------------------|--------------------|
| lact (float) | Output average current [A] | 0I <sub>n</sub> A  |
| Pact (float) | Output average power [kW]  | 0P <sub>n</sub> kW |

Bits0: Acknowledge bits.

- 0: Relays ON acknowledge (1), or OFF (0)
- 1: Power ON (1), INHIBIT (0)
- 2: Ramp active
- 3: Master Active (in parallel mode) or Pulse Mode ON (1) / OFF (0) (in **TruPlasma Highpulse+**)
- 4: Display control
- 5: Alarms to read.
- 6: RS232/485 control
- 7: Ready

Bits1: more acknowledge bits.

- 0: Interlock (1), no interlock (0)
- 1: OverTemp Bit: 1=Overtemp
- 2: PowerFail (1), power OK (0)
- 3: FPGA (1) OK (0)
- 4: EEprom Error (1), OK (0)
- 5: -
- 6: WarningActive (1), inactive (0).
- 7: AlarmActive (1), inactive (0).

Bits2: more acknowledge bits.

- 0: RegU ON (1), OFF (0)
- 1: RegI ON (1), OFF (0)
- 2: RegP ON (1), OFF (0)
- 3: Pcomp Active
- 4: EOJM
- 5: EOTL
- 6: EOPT
- 7: Arc occ.

| lm (integer)      | Arc counter (Imax criterion)      | 065535 |
|-------------------|-----------------------------------|--------|
| Uxl (integer)     | Arc counter (Uxl criterion)       | 065535 |
| dU (integer)      | Arc counter (dU criterion)        | 065535 |
| Arc/s(float)      | Arcs per second counter           |        |
| dU[x100](integer) | Arc counter (dU criterion) [x100] | 010000 |

Other parameters can be accessed for reading or adjustment, through their channel numbers. Byte, integer and float values have separate channel number lists. Command strings for reading and setting these values together with channel lists are presented below.

# 6101 Identification of device:

### PC to TruPlasma Highpulse:

| 0    | 1    | 2                | 3    | 4                | 5    | 6    | 7    | 8    | 9    |
|------|------|------------------|------|------------------|------|------|------|------|------|
| 0x0A | 0xF5 | DST <sub>H</sub> | DST∟ | SRC <sub>H</sub> | SRC∟ | 0x61 | 0x01 | CRCн | CRC∟ |

## TruPlasma Highpulse reply:

| 0               | 1    | 2                | 3                | 4                | 5    | 6 | 7   | 8    | 9    |
|-----------------|------|------------------|------------------|------------------|------|---|-----|------|------|
| 0x20            | 0xDF | DST <sub>H</sub> | DST∟             | SRC <sub>H</sub> | SRC∟ | : | ACK | 0x68 | 0x0C |
| 10              | •••  | 29               | 30               | 31               |      |   |     |      |      |
| S <sub>00</sub> |      | S <sub>19</sub>  | CRC <sub>H</sub> | CRC∟             |      |   |     |      |      |

Where:  $S_{00}$ ÷ $S_{19}$ : device type (char[20]);

# 6141 Set a floating point value

## PC to TruPlasma Highpulse:

| 0                | 1                | 2                | 3    | 4                | 5    | 6    | 7    | 8                | 9    |
|------------------|------------------|------------------|------|------------------|------|------|------|------------------|------|
| 0x10             | OxEF             | DST <sub>H</sub> | DST∟ | SRC <sub>H</sub> | SRC∟ | 0x61 | 0x41 | СНN <sub>н</sub> | CHN∟ |
| 10               | 11               | 12               | 13   | 14               | 15   |      |      |                  |      |
| VAL <sub>0</sub> | VAL <sub>1</sub> | VAL <sub>2</sub> | VAL₃ | CRC <sub>H</sub> |      |      |      |                  |      |

Where:

CHN (int) Val (float) Channel number Value to be set

## TruPlasma Highpulse reply:

| 0                | 1    | 2                | 3    | 4 | 5 | 6    | 7 | 8    | 9    |
|------------------|------|------------------|------|---|---|------|---|------|------|
|                  |      | DST <sub>H</sub> |      |   |   | АСКн |   | 0x61 | 0x41 |
| 10               | 11   | 12               | 13   |   |   |      |   |      |      |
| CHN <sub>H</sub> | CHN∟ | CRCн             | CRC∟ |   |   |      |   |      |      |

Where:

CHN (int)

Channel number

## 6142 Read a floating point value

#### PC to TruPlasma Highpulse:

| 0                | 1    | 2                | 3    | 4                | 5    | 6 | 7 | 8 | 9 |
|------------------|------|------------------|------|------------------|------|---|---|---|---|
| 0x0C             | 0xF3 | DST <sub>H</sub> | DST∟ | SRC <sub>H</sub> | SRC∟ |   |   |   |   |
| 10               | 11   |                  |      |                  |      |   |   |   |   |
| CRC <sub>H</sub> | CRC∟ |                  |      |                  |      |   |   |   |   |



Where:

CHN (int)

Channel number

## TruPlasma Highpulse reply:

| 0                | 1    | 2                | 3                | 4                | 5    | 6    | 7    | 8    | 9    |
|------------------|------|------------------|------------------|------------------|------|------|------|------|------|
| 0x12             | 0xED | DST <sub>H</sub> | DST∟             | SRC <sub>H</sub> | SRC∟ | АСКн | ACK  | 0x61 | 0x42 |
| 10               | 11   | 12               | 13               | 14               | 15   | 16   | 17   |      |      |
| CHN <sub>H</sub> | CHN∟ | VAL <sub>0</sub> | VAL <sub>1</sub> | VAL <sub>2</sub> | VAL₃ | CRCн | CRC∟ |      |      |

Where:

CHN (int) Val (float) Channel number Value to be set

## 6121 Set an integer value

#### PC to TruPlasma Highpulse:

| 0                | 1       | 2                | 3    | 4                | 5    | 6    | 7    | 8                | 9    |
|------------------|---------|------------------|------|------------------|------|------|------|------------------|------|
| 0x0E             | 0xF1    | DST <sub>H</sub> | DST∟ | SRC <sub>H</sub> | SRC∟ | 0x61 | 0x21 | СНN <sub>н</sub> | CHN∟ |
| 10               | 11      | 12               | 13   |                  |      |      |      |                  |      |
| VAL <sub>H</sub> | $VAL_L$ | CRCн             | CRCL |                  |      |      |      |                  |      |

Where:

CHN (int) Val (int) Channel number Value to be set

## TruPlasma Highpulse reply:

| 0                | 1    | 2                | 3         | 4                | 5    | 6    | 7   | 8    | 9    |
|------------------|------|------------------|-----------|------------------|------|------|-----|------|------|
| 0x0E             | 0xF1 | DST <sub>H</sub> | DST∟      | SRC <sub>H</sub> | SRC∟ | АСКн | ACK | 0x61 | 0x21 |
| 10               | 11   | 12               | 13        |                  |      |      |     |      |      |
| CHN <sub>H</sub> | CHN∟ | CRCн             | $CRC_{L}$ |                  |      |      |     |      |      |

Where:

CHN (int) Channel number

## 6122 Read an integer value

## PC to TruPlasma Highpulse:

| 0    | 1    | 2 | 3 | 4                | 5 | 6 | 7 | 8                | 9 |
|------|------|---|---|------------------|---|---|---|------------------|---|
| 0x0C | 0xF3 |   |   | SRC <sub>H</sub> |   |   |   | СНN <sub>н</sub> |   |
| 10   | 11   |   |   |                  |   |   |   |                  |   |
| CRCн | CRC∟ |   |   |                  |   |   |   |                  |   |

Where:

CHN (int)

Channel number

## TruPlasma Highpulse reply:

| 0    | 1    | 2                | 3    | 4                | 5    | 6                | 7   | 8    | 9    |
|------|------|------------------|------|------------------|------|------------------|-----|------|------|
| 0x10 | OxEF | DST <sub>H</sub> | DST∟ | SRC <sub>H</sub> | SRC∟ | ACK <sup>H</sup> | ACK | 0x61 | 0x22 |
| 10   | 11   |                  |      | 14               | 15   |                  |     |      |      |
|      |      |                  |      | CRCн             | CRC∟ |                  |     |      |      |

Where:

CHN (int) Val (float) Channel number Value to be set

# 6111 Set a byte value

## PC to TruPlasma Highpulse:

| 0    | 1                | 2    | 3    | 4                | 5    | 6    | 7    | 8    | 9    |
|------|------------------|------|------|------------------|------|------|------|------|------|
| 0x0D | 0xF2             |      | DST∟ | SRC <sub>H</sub> | SRC∟ | 0x61 | 0x11 | СНNн | CHN∟ |
| 10   | 11               | 12   |      |                  |      |      |      |      |      |
| VAL  | CRC <sub>H</sub> | CRC∟ |      |                  |      |      |      |      |      |

Where:

CHN (int) Val (int) Channel number Value to be set

#### TruPlasma Highpulse reply:

| 0    | 1    | 2                | 3    | 4                | 5         | 6                | 7   | 8    | 9    |
|------|------|------------------|------|------------------|-----------|------------------|-----|------|------|
| 0x0E | 0xF1 | DST <sub>H</sub> | DST∟ | SRC <sub>H</sub> | $SRC_{L}$ | ACK <sub>H</sub> | ACK | 0x61 | 0x11 |
| 10   | 11   | 12               | 13   |                  |           |                  |     |      |      |
| CHNн | CHN∟ | CRCн             | CRC∟ |                  |           |                  |     |      |      |

Where:

CHN (int) Channel number

## 6112 Read a byte value

#### PC to TruPlasma Highpulse:

| 0                | 1    | 2                | 3    | 4                | 5    | 6    | 7    | 8    | 9    |
|------------------|------|------------------|------|------------------|------|------|------|------|------|
| 0x0C             | 0xF3 | DST <sub>H</sub> | DST∟ | SRC <sub>H</sub> | SRC∟ | 0x61 | 0x12 | СНNн | CHN∟ |
| 10               | 11   |                  |      |                  |      |      |      |      |      |
| CRC <sub>H</sub> | CRC∟ |                  |      |                  |      |      |      |      |      |

Where:

CHN (int)

Channel number

## TruPlasma Highpulse reply:

|   | 0    | 1    | 2                | 3    | 4    | 5 | 6    | 7 | 8    | 9    |
|---|------|------|------------------|------|------|---|------|---|------|------|
| ľ | 0x0F |      | DST <sub>H</sub> | DST∟ |      |   | АСКн |   | 0x61 | 0x12 |
| ľ | 10   | 11   | 12               | 13   | 14   |   |      |   |      |      |
| ľ | CHNн | CHN∟ | VAL              | CRCн | CRC∟ |   |      |   |      |      |

# 6301 Read alarm code and describtion

## PC to TruPlasma Highpulse:

| 0    | 1    | 2                | 3    | 4                | 5    | 6    | 7    | 8    | 9    |
|------|------|------------------|------|------------------|------|------|------|------|------|
| 0x0A | 0xF5 | DST <sub>H</sub> | DST∟ | SRC <sub>H</sub> | SRC∟ | 0x63 | 0x01 | CRCн | CRC∟ |

## TruPlasma Highpulse reply:

| 0     | 1     | 2         | 3     | 4      | 5    | 6    | 7    | 8 | 9 |
|-------|-------|-----------|-------|--------|------|------|------|---|---|
| LEN   |       |           |       |        | SRC∟ | ACKH | ACK  |   |   |
| 10    | 11    | 12 to n-2 |       |        |      | n-1  | n    |   |   |
| CODEH | CODEL |           | Descr | iption |      | CRCн | CRC∟ |   |   |

# 6302 Read again last alarm code and describtion

## PC to TruPlasma Highpulse:

| 0    | 1    | 2                | 3    | 4                | 5    | 6    | 7    | 8                | 9    |
|------|------|------------------|------|------------------|------|------|------|------------------|------|
| 0x0A | 0xF5 | DST <sub>H</sub> | DST∟ | SRC <sub>H</sub> | SRC∟ | 0x63 | 0x02 | CRC <sub>H</sub> | CRC∟ |

## TruPlasma Highpulse reply:

| 0                 | 1    | 2                | 3     | 4                | 5    | 6                | 7    | 8    | 9    |
|-------------------|------|------------------|-------|------------------|------|------------------|------|------|------|
| LEN               | ~LEN | DST <sub>H</sub> | DST∟  | SRC <sub>H</sub> | SRC∟ | АСКн             | ACK  | 0x63 | 0x02 |
| 10                | 11   | 12 to n-2        |       |                  |      | n-1              | n    |      |      |
| CODE <sub>H</sub> |      |                  | Descr | iption           |      | CRC <sub>H</sub> | CRCL |      |      |

# Channel numbers:

Byte

| Byte |                                                                                                                                                                     |       |            |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| Chan | Text                                                                                                                                                                | Range | Adjustable |
| 9    | Warnings Sources Bits 1:<br>0="EE NoData"<br>1="EE CheckSum"<br>2="EE Write Err"<br>3="Arc Fmax"<br>4="Calbr Done"<br>5="UnClbtnStat"<br>6="T1 Warn"<br>7="T2 Warn" | 0 255 | NO         |
| 10   | Warnings Sources Bits 2:<br>0="T3 Warn"<br>1="T4 Warn"<br>2="CSPC1_Warn"<br>3="CSPC2_Warn"<br>4="CSPC3_Warn"<br>5="CSPC4_Warn"<br>6="Water Flow"<br>7="Water Dir"   | 0 255 | NO         |
| 11   | Warnings Sources Bits 3:<br>0="CSPC1 CW"<br>1="CSPC2 CW"<br>2="CSPC3 CW"<br>3="CSPC4 CW"<br>4="DA CTW"<br>5="RS232 CW"<br>6="RS485 CW"<br>7="DN CW"                 | 0 255 | NO         |
| 12   | Warnings Sources Bits 4:<br>0="PB CW"<br>1="Analog CW"<br>2="SynchCon W"<br>3="ASrc CW"<br>4="Slave1 W"<br>5="Slave2 W"<br>6="Slave3 W"<br>7="Slave4 W"             | 0 255 | NO         |
| 68   | Warnings Sources Bits 5:<br>0="EE NewMap"<br>1="Dev U"<br>2="Dev I"<br>3="Dev P"<br>4="No Plasma"<br>5="Pcomp"<br>6="CAN Warn"                                      | 0 63  | NO         |
| 1    | Alarms Sources Bits 1:<br>0="EE Error"<br>1="EE CheckSumErr"<br>2="FpgaConfFail"<br>3="CSPC1 Al"<br>4="CSPC2 Al"<br>5="CSPC3 Al"<br>6="CSPC4 Al"                    | 0 255 | NO         |

#### TruPlasma Highpulse 4000 NEW Series

| Chan | Text                                                                                                                                                                  | Range | Adjustable |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
|      | 7="CSPC SAR"                                                                                                                                                          |       |            |
| 2    | Alarms Sources Bits 2:<br>0="U24 max"<br>1="U24 min"<br>2="T1 off"<br>3="T2 off"<br>4="T3 off"<br>5="T4 off"<br>6="DF Fail"<br>7="Phase Fail"                         | 0 255 | NO         |
| 3    | Alarms Sources Bits 3:<br>0="CSPC1 CT"<br>1="CSPC2 CT"<br>2="CSPC3 CT"<br>3="CSPC4 CT"<br>4="DA CT"<br>5="RS232 CT"<br>6="RS485 CT"<br>7="DN CT"                      | 0 255 | NO         |
| 4    | Alarms Sources Bits 4:<br>0="PB CT"<br>1="Analog CT"<br>2="SynchConn"<br>3="ASrc CT"<br>4="Slave1 Al"<br>5="Slave2 Al"<br>6="Slave3 Al"<br>7="Slave4 Al"              | 0 255 | NO         |
| 60   | Alarms Sources Bits 5:<br>0="I2C EE"<br>1="I2C Temp"<br>2="I2C PF"<br>3="I2C RTC"<br>4="ParBus Err"<br>5="CAN Err"<br>6="NoLoad"<br>7="ShortCircuit"                  | 0 255 | NO         |
| 61   | Alarms Sources Bits 5:<br>0="ArcDensity"<br>1="PLD SW ver"<br>2="CLC Freq.High"<br>3="CLC Shorted"                                                                    | 0 15  | NO         |
| 19   | Initial control source, bit rate:<br>0: Display ini;<br>1: Analog ini;<br>2: RS232 ini;<br>3: Profibus ini;<br>4: RS485 ini;<br>5: DeviceNet ini;<br>6: EtherCAT ini; | 0 32  | YES        |
| 20   | Actual control source, bit rate:<br>0: Display;<br>1: Analog;<br>2: RS232;                                                                                            | 0 32  | YES        |



| Chan | Text                                                                                                                                                                                                           | Range | Adjustable |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
|      | 3: Profibus;<br>4: RS485;<br>5: DeviceNet;<br>6: EtherCAT ini;                                                                                                                                                 |       |            |
| 22   | Pararel Operation Mode (=0 Single), bit rate:<br>0: Master;<br>1: Slave1;<br>2: Slave2;<br>3: Slave3;<br>4: Slave4;                                                                                            | 0 16  | YES        |
| 23   | Long ramp modes, bit rate:<br>0: Power ramp (1 On/0 Off);<br>1: Current ramp (1 On/0 Off);                                                                                                                     | 0 2   | YES        |
| 24   | ProcessTimer modes, bit rate:<br>0: Power On (1 On/0 Off);<br>1: Power regulator (1 On/0 Off);                                                                                                                 | 0 2   | YES        |
| 26   | Synchro mode enable                                                                                                                                                                                            | 0 1   | YES        |
| 27   | Ignition mode enable                                                                                                                                                                                           | 0 1   | YES        |
| 28   | RS speed:<br>0: 9600 bps;<br>1: 19200 bps;<br>2: 38400 bps;<br>3: 57600 bps;<br>4: 115200 bps;                                                                                                                 | 0 16  | YES        |
| 29   | Synchro Bus Termination (1 On/0 Off)                                                                                                                                                                           | 0 1   | YES        |
| 32   | Target Life enable                                                                                                                                                                                             | 0 1   | YES        |
| 33   | Joule mode enable                                                                                                                                                                                              | 0 1   | YES        |
| 34   | Power Compensation Enable                                                                                                                                                                                      | 0 1   | YES        |
| 35   | Current and Power Limiter modes, bit rate:<br>0: Current Limiter On (1 On/0 Off);<br>1: Power Limiter On (1 On/0 Off);                                                                                         | 0 2   | YES        |
| 200  | Arc criteria Enable/Disable, bit rate:<br>0: dU En (1 On/0 Off);<br>1: Uxl (1 On/0 Off);<br>2: Imax (1 On/0 Off);<br>3: dU Obs (1 On/0 Off);<br>4: Arc Burst Detector (1 On/0 Off);<br>5: Ux Obs (1 On/0 Off); | 0 31  | YES        |
| 205  | Reset arc counters (0 $\rightarrow$ 1; for 1 transmission is enough)                                                                                                                                           | 0 1   | YES        |
| 206  | Reset dUCnt[x100] (0 $\rightarrow$ 1)                                                                                                                                                                          | 0 1   | YES        |
| 300  | Profibus profile Type:<br>0: Module;<br>1: rsv;<br>2: Scalo;                                                                                                                                                   | 0 4   | YES        |
| 301  | Float type(for Profibus) 0:Motorola, 1: Intel                                                                                                                                                                  | 0 1   | YES        |
| 320  | DeviceNet speed:<br>0: 125 kbps;<br>1: 250 kbps;<br>2: 500 kbps;                                                                                                                                               | 0 4   | YES        |

#### Word:

| Chan | Text                                                                                  | Range     | Adjustable |
|------|---------------------------------------------------------------------------------------|-----------|------------|
|      | Communication:                                                                        |           |            |
| 3    | RS485 Address                                                                         | 0 65535   | YES        |
| 32   | Communication Timeout                                                                 | 0 65s     | YES        |
| 300  | Profibus ID                                                                           | 0 125     | YES        |
| 301  | Power Scale                                                                           | 0 65535   | YES        |
| 302  | Voltage Scale                                                                         | 0 65535   | YES        |
| 303  | Current Scale                                                                         | 0 65535   | YES        |
| 320  | DeviceNet ID                                                                          | 0 63      | YES        |
|      | DC unit Parameters:                                                                   |           |            |
| 12   | Ignition current booster                                                              | 0 50%     | YES        |
| 20   | Ignition Pulse Time                                                                   | 0 100 us  | YES        |
| 33   | Ignition Delay Time                                                                   | 0 10s     | YES        |
| 26   | Maximum Power Compensation Value                                                      | 0 100 %   | YES        |
| 28   | Maximum Power Compensation Time                                                       | 0 25 s    | YES        |
| 30   | Number of slave for Parallel Operation mode                                           | 0 4       | YES        |
| 41   | Long ramp time                                                                        | 0 7200s   | YES        |
| 40   | Long Ramp Start Value                                                                 | 0 100%    | YES        |
| 44   | Long ramp rest value                                                                  | -         | NO         |
| 42   | ProcessTimer Time                                                                     | 0 36000   | YES        |
| 43   | ProcessTimer rest value                                                               | 036000    | NO         |
| 11   | Current clamp at set %Imax value below Imax                                           | 0 50%     | YES        |
| 15   | Power clamp at set %Pset value above Pset                                             | 0 50%     | YES        |
| 10   | The PWM power control is reduced by this % value.                                     | 0 50%     | YES        |
| 23   | CLim Cnt                                                                              | -         | NO         |
| 24   | PLim Cnt                                                                              | -         | NO         |
| 8    | Target Life Source select                                                             | 1 8       | YES        |
|      | Arc detection settings                                                                |           |            |
| 202  | Time between succeeding arcs for Arc Burst detection                                  | 1 1000 us | YES        |
| 201  | Number of arcs in row for Arc Burst detection                                         | 1 100     | YES        |
| 216  | Arc Burst detection counter                                                           | 0 65535   | NO         |
| 221  | Arc Density. For volume higher than 0 activates detection of<br>"Too many arcs" alarm | 0 8000    | YES        |

## Float:

| Chan | Text                                            | Range                                     | Adjustable |
|------|-------------------------------------------------|-------------------------------------------|------------|
|      | Arc detection threshold settings                |                                           |            |
| 200  | Voltage On threshold for dU arc det. Criterion  | 0.05U <sub>n</sub><br>0.8U <sub>n</sub> V | YES        |
| 202  | Voltage Off threshold for dU arc det. Criterion | $0\ldots0.75U_nV$                         | YES        |
| 203  | dU Offset                                       | 30 200V                                   | YES        |
| 204  | Break time for dU criterion                     | 51000µs                                   | YES        |

#### TruPlasma Highpulse 4000 NEW Series

| Chan | Text                                                       | Range                              | Adjustable |
|------|------------------------------------------------------------|------------------------------------|------------|
| 222  | Soft-start pre-pulse advance time for dU criterion         | 0 5 us                             | YES        |
| 230  | Voltage On threshold for dU_observer arc det. Criterion    | 05 us                              | NO         |
| 230  | voltage on threshold for do_observer arc det. Criterion    | 0.050n<br>0.8UnV                   | NO         |
| 231  | Voltage Off threshold for dU_observer det. Criterion       | 0 0.75U <sub>n</sub> V             | NO         |
| 208  | Voltage threshold for UxI arc det. Criterion               | 0 0.9U <sub>n</sub> V              | YES        |
| 207  | Current threshold for UxI arc det. Criterion               | 0.05In InA                         | YES        |
| 209  | Break time for UxI criterion                               | 0.180ms                            | YES        |
| 210  | Ux Offset                                                  | 10 200V                            | YES        |
| 226  | Ramp time for UxI criterion                                | 0.1100ms                           | YES        |
| 205  | Current threshold for Imax arc det. Criterion              | $0.1I_n \ldots 1.3I_nA$            | YES        |
| 206  | Break time for Imax criterion                              | 0.180ms                            | YES        |
| 227  | Ramp time for Imax criterion                               | 0.0100ms                           | YES        |
|      | DC unit Parameters:                                        |                                    |            |
| 22   | Voltage ON threshold for Ignition mode                     | 0.5U <sub>n</sub> U <sub>n</sub> V | YES        |
| 20   | Current ON threshold for Ignition mode                     | 0 0.01I <sub>n</sub> A             | YES        |
| 21   | Current OFF threshold_2 for Ignition mode (floating anode) | 0 0.05I <sub>n</sub> A             | YES        |
| 25   | Actual Power Correction value [kW]                         | -                                  | NO         |
| 26   | Actual Power Losses value [kW]                             | -                                  | NO         |
| 51   | Target Life delivered energy [kWh]                         | 0 36000.0                          | NO         |
| 52   | Target Life setpoint [kWh]                                 | 0 36000.0                          | YES        |
| 55   | Joule Mode energy setpoint [kJ]                            | 0 20000.0                          | YES        |
| 56   | Joule Mode Actual Energy [kJ]                              | 0 20000.0                          | NO         |
|      | Measurments:                                               |                                    |            |
| 900  | CMPC24 DSP version                                         | -                                  | NO         |
| 901  | CMPC24 PLD version                                         | -                                  | NO         |
| 902  | CSPC24 S1 version                                          | -                                  | NO         |
| 903  | CSPC24 S2 version                                          | -                                  | NO         |
| 904  | CSPC24 S3 version                                          | -                                  | NO         |
| 905  | CSPC24 S4 version                                          | -                                  | NO         |
| 906  | Display Panel version                                      | -                                  | NO         |
| 907  | XML for DA22 version                                       | -                                  | NO         |
| 920  | Controller supply voltage                                  | 032V                               | NO         |
| 932  | Temperature T1:                                            | 0100°C                             | NO         |
| 933  | Temperature T2:                                            | 0100°C                             | NO         |
| 934  | Temperature T3:                                            | 0100°C                             | NO         |
| 935  | Temperature T4:                                            | 0100°C                             | NO         |
|      | CSPC24 S1:                                                 |                                    |            |
| 1000 | Rectified mains voltage                                    | 01000V                             | NO         |
| 1001 | Rectified mains voltage after PFC                          | 01000V                             | NO         |
| 1002 | Temperature T1:                                            | 0100°C                             | NO         |
| 1003 | Temperature T2:                                            | 0100°C                             | NO         |
| 1004 | Temperature T3:                                            | 0100°C                             | NO         |
| 1005 | Temperature T4:                                            | 0100°C                             | NO         |

TruPlasma Highpulse 4000 NEW Series

| Chan | Text                              | Range  | Adjustable |
|------|-----------------------------------|--------|------------|
|      | CSPC24 S2:                        |        |            |
| 1010 | Rectified mains voltage           | 01000V | NO         |
| 1011 | Rectified mains voltage after PFC | 01000V | NO         |
| 1012 | Temperature T1:                   | 0100°C | NO         |
| 1013 | Temperature T2:                   | 0100°C | NO         |
| 1014 | Temperature T3:                   | 0100°C | NO         |
| 1015 | Temperature T4:                   | 0100°C | NO         |

# Acknowledge and failure codes (HEX format)

- 4000 Transmission OK and command executed.
- 4001 Transmission length error. Byte1 is not a cancellation of Byte0.
- 4002 Check sum error.

The two byte checksum is not equal to sum of bytes no. 2  $\dots$  (n-2).

- 4004 Unknown Command.
- 4005 Bad Address
- 4006 Channel address not exist.
- 4010 Write EEPROM error.
- 4020 Write EEPROM disabled by slave mode (6141, 6121, 6111).
- 4030 Write EEPROM disabled.

# 7.2. Profibus transmission protocol description

Profibus is an interface that allows magnetron units to communicate with Profibus master. Magnetron power supply (DC3000) acts as a slave device in the communication process. It never initiates transmission. Profibus master sends commands coded in modules, which are executed by power supply, and a reply is generated. Convenient and flexible construction of Profibus profile allows user to construct all communication (length of input and output buffer) via Profibus by using only one module or several modules. It is only limited by the imagination and innovation of customer. Recognized modules are presented below, but new functional modules can be implemented for special orders.

#### Baud Rate for communication between Profibus master and Profibus slave

Profibus slave (DC3000) has an auto-baudrate feature which adjusts automatically to rate of Profibus master system during start-up. Baud rates are accessible in a range from 9.6 kbits to 12 Mbits.

#### Setting Profibus ID

ID number is set via front panel console (if available) or through RS232 or Profibus. Software activates ID number once after reset, therefore, if ID number has been changed unit must be restarted (powered-off completely and powered-on again).

### Profibus module construction

DC3000 uses transmission modules, which have different byte length. Module sequences and their quantities can be different (choice of modules and length of frame depends only on user) in conditions when there are no more than 20 modules and the quantity of maximum input and output bytes does not exceed 80. It is always possible to increase this limitation by special order.

All integer (2 bytes) values are listed with the most significant byte (MSB) coming first. Floating-point values can be represented in both: INTEL and MOTOROLA standards. The standard of floating-point values is set via front panel console, by RS232 or Profibus (ref. to module 21 or module 22 descriptions). Additional modules can be implemented if necessary. All modules (except modules 21 and 22) are available from channel level of module 21 (as an integer value) and module 22 (as a floating point number). All types of modules are presented below.



## Module 1 - Control Bits

ident. 0x82,0x00,0x00,0x01

This module is represented by one byte which includes 8 control bits:

- LSB 0: Profibus master controls DC3000 (1).
  - 1: -
  - 2: Mains relays ON (0  $\rightarrow$  1), OFF (0).
  - 3: Power ON (1), OFF (0).
  - 4: Alarms Reset
  - 5: Reset arc counters  $(0 \rightarrow 1; 1 \text{ transmission is sufficient})$
  - 6: Pulsed mode (1) (for pulsed units only)

MSB 7: -

## Voltage SetPoint:

## Module 2 - Voltage SetPoint in integer format

ident. 0x82,0x01,0x00,0x02

This module consists of two bytes, which represent voltage setpoint value in a 16-bit integer format. The full voltage range of power supply:

0 ... Un [V] is represented by a 0 ... Uscale integer value integer value = Uscale \* Uset / Un where: Uset – voltage setpoint Un – nominal voltage of power supply Uscale – user defined setting – can be set via front panel, by RS232 or Profibus (ref. to module 21 or module 22 descriptions).

Note: Resolution depends on Uscale value.

## Module 3 - Voltage SetPoint value in a floating-point format

ident. 0x82,0x03,0x00,0x03

This module consists of 4 bytes which represent voltage setpoint value in a floating-point format with respect to a selected standard. This value must not exceed nominal output voltage of power supply - Un. [V]

**Important**: If none of the above-mentioned modules are selected, then the voltage setpoint is set to a maximum (Un).



## <u>Current SetPoint:</u>

### Module 4 - Current SetPoint in integer format

ident. 0x82,0x01,0x00,0x04

This module consists of two bytes which represent current setpoint value in a 16-bit integer format. Full current range of power supply

0 ... In [A] is represented by a 0 ... Iscale integer value integer value = Iscale \* Iset / In where: Iset – current setpoint In – nominal current of power supply Iscale – user defined setting – can be set via Front Panel, RS232 or Profibus (refer to module 21 or module 22 descriptions).

Note: Resolution depends on Iscale value.

#### Module 5 - Current SetPoint in a floating point-format

ident. 0x82,0x03,0x00,0x05

This module consists of 4 bytes which represent the current setpoint value in a floatingpoint format with respect to selected standard. This value must not exceed nominal output current of power supply - In.[A]

Important: If none of the two above-mentioned modules are selected, then current setpoint is set to maximum (In).

## Power Setpoint:

## Module 6 - Power SetPoint in integer format

ident. 0x82,0x01,0x00,0x06

This module consists of two bytes which represent power setpoint value in a 16-bit integer format. The full power range of power supply

0 ... Pn [kW] is represented by a 0 ... Pscale integer value integer value = Pscale \* Pset / Pn where: Pset – power setpoint Pn – nominal power of power supply Pscale – user defined setting – can be set via front panel, through RS232 or Profibus (ref. to module 21 or module 22 descriptions).

Note: The resolution depends on Pscale value.

#### Module 7 - Power SetPoint in a floating point format

ident. 0x82,0x01,0x00,0x07

This module consists of 4 bytes, which represent power setpoint value in a floating-point format with respect to selected standard. This value must not exceed nominal output power of the power supply - Pn [kW].

Important: If neither of the two above-mentioned modules are selected, then power setpoint is set to maximum (Pn).

## <u>Select control mode:</u>

These two modules – will be omitted if any of previous modules (2 .. 7) are defined – select desired control mode and regulate setpoint at same time. When a certain control mode is selected, remaining setpoints are fixed to maximum. For instance, if power-control mode is selected, then current and voltage setpoints are fixed to their nominal values.

Setpoint value can be presented in both – integer or floating-point format – as in modules 2 ... 7. The control mode is selected by two low significant bits from first additional byte.

| Bits           | RegP | RegU | Regl |
|----------------|------|------|------|
| 2 <sup>0</sup> | 0    | 1    | 0    |
| 2 <sup>1</sup> | 0    | 0    | 1    |

Important: If any of the previous modules from 2 to 7 are chosen, Select control mode module will be omitted.

#### Module 8 – Select control mode; integer format setpoint

ident. 0x82,0x02,0x00,0x08

This module consists of three bytes, with control mode selected in first byte (RegSelect) and setpoint in last two bytes in integer format. Depending on selected control mode the last two bytes are scaled by user-defined Pscale, Uscale or Iscale values (see ex. in module 2, 4 and 6). Setpoints for remaining (unselected) parameters are set to their nominal values.

#### Module 9 – Select control mode; floating-point format setpoint

ident. 0x82,0x04,0x00,0x09

This module consists of five bytes, with control mode being selected in first byte (RegSelect) and a setpoint on last 4 bytes in floating-point format according to selected standard. Setpoints for remaining (unselected) parameters are set to their nominal values.

## Settings for pulse generator:

### Module 10 - Frequency Setting (for pulsed units only)

ident. 0x82,0x01,0x00,0x0A

This single word module sets frequency value.

For TruPlasmaHighPulse values in range 1 ... N represent a frequency setting of 1Hz ... N Hz where N is the nominal pulse frequency for this unit.

Values from beyond unit's frequency range will be limited.

#### Module 11 – Pulse Time Setting (for pulsed units only)

ident. 0x82,0x01,0x00,0x0B

This single byte module sets off-pulse time value in microseconds.

For TruPlasmaHighPulse values in range  $10 \dots N$  represent an off-time setting of 1.0us  $\dots$  (N)us where(N) is the nominal off-time for this unit.

Values from beyond the unit's off-time range will be limited.

## Actual output voltage:

## Module 12 - Actual output voltage value in integer format

ident. 0x42,0x01,0x00,0x0C

This module consists of two bytes and shows actual output voltage value in 16-bit integer format.

Full voltage range of power supply

0 ... Un [V]

is represented by a

0 ... Uscale integer value

integer value = Uscale \* Uact / Un

where:

Uact – actual output voltage

Un – nominal voltage of power supply

Uscale – user defined setting – can be set via front panel by RS232 or Profibus (see module 21 or module 22 descriptions).

Note: Resolution depends on Uscale value.

#### Module 13 – Actual output voltage value in a floating-point format

ident. 0x42,0x03,0x00,0x0D

This module consists of 4 bytes which represent actual output voltage value in a floatingpoint format with respect to selected standards.

# Actual output current:

## Module 14 – Actual output current value in integer format

ident. 0x42,0x01,0x00,0x0E

This module consists of two bytes and displays actual output current value in 16-bit integer format.

Full current range of power supply 0 ... In [A] is represented by a 0 ... Iscale integer value

integer value = Iscale \* lact / In

where:

lact – actual output voltage

In – nominal voltage of power supply

Iscale – user defined setting – can be set via front panel by RS232 or Profibus (see module 21 or module 22 descriptions).

•

Note: The resolution depends on Iscale value.

## Module 15 - Actual current value in a floating-point format

ident. 0x42,0x01,0x00,0x0F

This module consists of 4 bytes which represent actual output current value in a floatingpoint format with respect to selected standard.

## <u>Actual output power :</u>

## Module 16 - Actual output power in integer format

ident. 0x42,0x01,0x00,0x10

This module consists of two bytes which represent actual output power value in a 16-bit integer format. The full power range of power supply

0 ... Pn [kW]

is represented by a

0 ... Pscale integer value

integer value = Pscale \* Pact / Pn where: Pact – output power Pn – nominal power of power supply Pscale – user defined setting – can be set via front panel by RS232 or by Profibus (see module 21 or module 22 descriptions). Note: Resolution depends on Pscale value.

## Module 17 - Actual output power value in a floating-point format

ident. 0x42,0x01,0x00,0x11

This module consists of 4 bytes which represent actual output power value in a floatingpoint format with respect to a selected standard.

# Actual pulse generator settings:

## Module 18 – Actual Frequency (for pulsed units only)

ident. 0x82,0x01,0x00,0x12

This single byte module shows frequency value . For TruPlasmaHighPulse values in range 1 ... N represent a frequency setting of 1Hz ... N Hz where N is the nominal pulse frequency for this unit.

## Module 19 – Actual pulse time (for pulsed units only)

ident. 0x82,0x01,0x00,0x13

This single byte module shows off-pulse time value in microseconds. For TruPlasmaHighPulse values in range 10 ... N represent an off-time setting of 1.0us ... (N)us where(N) is the nominal off-time for this unit.

## Module 20- Acknowledgement Bits

ident. 0x42,0x02,0x00,0x14

This module consists of 3 bytes which present basic binary status data. These bytes are described below.

| Bit | name               | description                                                                  |
|-----|--------------------|------------------------------------------------------------------------------|
|     |                    | Byte 0                                                                       |
| 0   | Profibus Ctrl Ack  | = 1 when the unit is controlled by Profibus commands                         |
|     |                    | = 0 when the unit is controlled from other sources                           |
| 1   | not used           |                                                                              |
| 2   | Relays ON          | = 1 when power relays are switched ON inside unit                            |
| 3   | Power ON           | = 1 when output power is enabled                                             |
| 4   | not used           |                                                                              |
| 5   | Pulse Mode Ack     | = 1 if unit is set to pulsed mode 1)                                         |
| 6   | not used           |                                                                              |
| 7   | Slave Ready        | = 1 is Power Supply is ready to turn on                                      |
|     |                    | Byte 1                                                                       |
| 0   | Interlock Ack      | = 1 when interlock loop is open                                              |
| 1   | Over Temp          | = 1 when unit overheats                                                      |
| 2   | Power Fault        | = 1 when mains voltage is too low or one phase is missing                    |
| 3   | FPGA Fault         | = 1 if FPGA unit fails                                                       |
| 4   | EEprom write Fault | = 1 if the EEprom FIFO line is overloaded                                    |
| 5   | not used           | -                                                                            |
| 6   | Warning active     | = 1 if any warning state is active                                           |
| 7   | Alarm Active       | = 1 if any alarm state is active                                             |
|     |                    | Byte 2                                                                       |
| 0   | RegU Ack           | These 3 bits display output parameter (voltage, current or power), which     |
| 1   | Regl Ack           | is actually limited by controller. E.g. bit0=1; bit2=0 at no load conditions |
| 2   | RegP Ack           | even if power control mode is selected.                                      |
| 3   | P_Lim              | =1 pulse time is limited due to average power is exceeded                    |
| 4   | EOPT/EOJM          | End Of Process Timer or End of Joule Mode <sup>1)</sup>                      |
| 5   | CLC_Pulse          | =1 first stage of CLC warning is active                                      |
| 6   | not used           |                                                                              |
| 7   | not used           |                                                                              |
| 1   | ) if applicable    | · · · · · · · · · · · · · · · · · · ·                                        |

1) if applicable

## <u>General set / read modules:</u>

All remaining settings and readouts can be accessed through two types of input / output modules:

module 21 for setting/reading in an integer format and module 22 for setting/reading in a floating-point format.

#### Module 21- Set/read parameter in an integer format

ident. 0xC1,0x03,0x03,0x15



Output bytes

| 1          | 2          | 3          | 4          |
|------------|------------|------------|------------|
| Data group | Channel    | Intege     | r value    |
| Out_Byte 0 | Out_Byte 1 | Out_Byte 2 | Out_Byte 3 |

Input bytes

| 1          | 2         | 3         | 4         |
|------------|-----------|-----------|-----------|
| Data group | Channel   | Intege    | r value   |
| In_Byte 0  | In_Byte 1 | In_Byte 2 | In_Byte 3 |

First byte Out/In\_Byte0 defines data group number (see table below). Second byte (Out/In\_Byte1) represents channel number which is assigned to a parameter. One channel is dedicated for reading and another for the setting of a parameter. The last 2 bytes show actual (In\_Byte2 and In\_Byte3) or set (Out\_Byte2 and Out\_Byte3) value of parameter. Setting and readout should be set or interpreted with respect to range and scale specified in table below. For instance, setting value of 250V to dUOFF parameter (data group=11, channel=5) requires a value of 2500 to be placed in Out\_Byte2 and Out\_Byte3 (Out\_Byte3=0xC4).

#### Module 22 - Set/read parameter in a floating-point format

ident. 0xC1,0x05,0x05,0x16

Output bytes

| 1          | 2          | 3                    | 4          | 5          | 6          |
|------------|------------|----------------------|------------|------------|------------|
| Data group | Channels   | Floating-point value |            |            |            |
| Out_Byte 0 | Out_Byte 1 | Out_Byte 2           | Out_Byte 3 | Out_Byte 4 | Out_Byte 5 |

Input bytes

| 1          | 2         | 3                    | 4         | 5         | 6         |
|------------|-----------|----------------------|-----------|-----------|-----------|
| Data group | Channels  | Floating-point value |           |           |           |
| In_Byte 0  | In_Byte 1 | In_Byte 2            | In_Byte 3 | In_Byte 4 | In_Byte 5 |

First byte (Out/In\_Byte0) defines data group number (see table below). Second byte (Out/In\_Byte1) represents channel number which is assigned to parameter. One channel is dedicated for reading and another for setting parameters. Last 4 bytes show actual (In\_Byte2 - In\_Byte5) or set (Out\_Byte2 - Out\_Byte5) value of parameters in floating-point format with respect to selected standard.

Important:

- 1. Only specified channel numbers can be used to access data.
- 2. In some instances it takes up to 50ms for a newly set variable to be updated in power supply's control system. Reading such variable at this time may result in display of previous value.
- 3. All values can be accessed in an integer or floating-point format. Binary values for floating point format will be shown as 0.0 (for low) or 1.0 (for high).
- 4. If both modules (21 and 22) are selected then configuration fault error can occur during communication.

List of data channels accessible through Profibus:

| Data<br>group | Channel nr /<br>description                    | integer v                                                        | alue     | Notes                                                                                                |
|---------------|------------------------------------------------|------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------|
| num           | bers in decimal format                         | range                                                            | scale    |                                                                                                      |
|               | 2: Control Bits                                | conditions described in                                          |          | Channel available for reading only.<br>values in floating-point format range from<br>0.0 255.0.      |
|               | 4: Acknowlegement Bits -<br>Byte0              | conditions described in                                          |          | Channel available for reading only.<br>values in floating-point format will range<br>from 0.0 255.0. |
| 1             | 8: Acknowledgement Bits - The 8 bits represent |                                                                  | ibed in  | Channel available for reading only.<br>values in floating-point format will range<br>from 0.0 255.0. |
|               | 16: Acknowlegement Bits<br>– Byte2             | conditions described in                                          |          | Channel available for reading only.<br>values in floating-point format will range<br>from 0.0 255.0. |
|               | 2: Actual Power setpoint                       | 0P <sub>n</sub> [kW]                                             | 0Pscale  | read only                                                                                            |
| 2             | 4: Actual Power output                         | 0P <sub>n</sub> [kW]                                             | 0Pscale  | read only                                                                                            |
|               | 8: Nominal Power output                        | 0P <sub>n</sub> [kW]                                             | 10:1     | read only                                                                                            |
|               | 2: Actual Voltage setpoint                     | $0U_n[V]$                                                        | 0Uscale  | read only                                                                                            |
| 3             | 4: Actual Voltage output                       | $0U_n[V]$                                                        | 0Uscale  | read only                                                                                            |
|               | 8: Nominal Voltage output                      | 0U <sub>n</sub> [V]                                              | 10:1     | read only                                                                                            |
|               | 2: Actual Curent setpoint                      | 0I <sub>n</sub> [A]                                              | 0…lscale | read only                                                                                            |
| 4             | 4: Actual Current output                       | 0I <sub>n</sub> [A]                                              | 0lscale  | read only                                                                                            |
|               | 8: Nominal Current output                      | 0l <sub>n</sub> [A]                                              | 10:1     | read only                                                                                            |
| 6             | 2: Actual Frequency                            | This channel represent r<br>conditions described in<br>Module 18 |          | read only                                                                                            |
| 0             | 3: Frequency Set point                         | This channel represent<br>conditions described in<br>Module 10   |          | set only, if module 10 wasn't selected                                                               |
| 7             | 2: Actual Pulse Time                           | This channel rep<br>conditions descri<br>Module 19               |          | read only                                                                                            |
| 7             | 3: Pulse Time Set point                        | This channel rep<br>conditions descri<br>Module 11               |          | set only, if module 11 wasn't selected                                                               |

| Data<br>group | Channel nr /<br>description | integer va | lue   | Notes |
|---------------|-----------------------------|------------|-------|-------|
| numbers i     | n decimal format            | range      | scale |       |

| Dat  |                                                                                                                                                                                                                                                                | integer                                                                         | <sup>-</sup> value                                                     | Notes                                                                                                                                                               |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| grou | 2: selection of the<br>arc detection criterion<br>(if applicable)<br>Use low order bits of the low order<br>order byte represent the<br>enabled (1) or<br>disabled (0) states:<br>bit0: -<br>bit1: Uxl criterion<br>bit2: Imax criterion<br>bit3: -<br>bit4: - |                                                                                 | Channel available for readout only.                                    |                                                                                                                                                                     |
| 10   | 3: set arc detection                                                                                                                                                                                                                                           | bit4: -<br>bit5: -<br>bit6:-<br>bit7:-<br>Use low order k                       | pits of the                                                            | Channel available for setting only.                                                                                                                                 |
|      | Criterion (if applicable)<br>low order byte to<br>enable (1) or<br>disable (0) the criterion<br>bit1: Uxl criterion<br>bit2: Imax criterion<br>bit3: -<br>bit4: -<br>bit5: -<br>bit6:-<br>bit7:-                                                               |                                                                                 | to<br>criterion:<br>on<br>rion                                         |                                                                                                                                                                     |
|      | 2: Ux thld setting                                                                                                                                                                                                                                             |                                                                                 | 0-900                                                                  | Control settings for the UxI arc detection criterion.                                                                                                               |
|      | 16: BreakTime setting                                                                                                                                                                                                                                          | 0.1-80.0ms<br>0.0-100.0ms                                                       | 0.05I <sub>n</sub> -I <sub>n</sub> *10<br>10-8000<br>0-10000<br>10-200 | Channels available for readout only.                                                                                                                                |
| 12   | 3: set Ux thld                                                                                                                                                                                                                                                 | This channel re<br>conditions desc<br>Module 31 and                             | present<br>ribed in<br>I 32 except                                     | Control settings for the UxI arc detection<br>criterion.<br>Channels available for setting only.<br>Channel 3 is set only, if modules 31 or 32 were<br>not selected |
|      | 5: set lx thld                                                                                                                                                                                                                                                 | This channel represent                                                          |                                                                        | Channel 5 is set only, if modules 29 or 30 were<br>not selected                                                                                                     |
|      | 2: Im thld setting                                                                                                                                                                                                                                             |                                                                                 | 10:1                                                                   | Control settings for the Imax arc detection<br>criterion.<br>Channels available for readout only.                                                                   |
|      | 5                                                                                                                                                                                                                                                              |                                                                                 | 10-8000                                                                |                                                                                                                                                                     |
| 13   | 3: set Im thld                                                                                                                                                                                                                                                 | This channel re<br>conditions desc<br>Module 27 and<br>scale. This chan<br>10:1 | ribed in<br>28 except                                                  | Control settings for the Imax arc detection<br>criterion.<br>Channels available for setting only.<br>Channel 3 is set only, if modules 27 or 28 were                |
|      |                                                                                                                                                                                                                                                                |                                                                                 |                                                                        | not selected                                                                                                                                                        |

| Dat<br>grou |                                       | intege    | er value | Notes                                          |
|-------------|---------------------------------------|-----------|----------|------------------------------------------------|
| num         | bers in decimal format                | range     | scale    |                                                |
|             | 2: dUcnt                              | 0-65535   | 0-65535  | Arc counters with respect to the arc detection |
|             | 4: Uxlcnt                             | 0-65535   | 0-65535  | criteria.                                      |
|             | 8: Imaxcnt                            | 0-65535   | 0-65535  | Channels available for readout only.           |
| 21          | 16:HardArcCnt                         | 0-65535   | 0-65535  |                                                |
|             | 32:uArcCnt / s.                       | 0-10000   | 0-10000  |                                                |
|             | 64:dUcnt x100                         | 0-10000   | 0-10000  |                                                |
|             | 128:HardArcCnt / s.                   | 0-10000   | 0-10000  |                                                |
| 22          | 3: Arc counter reset                  | Any value | ·        | Reset all arc counters, except dUcnt x100      |
| 22          | 5: dUcnt x100 reset                   | Any value |          | Reset dUcnt x100 counter                       |
| 31          | 2: Ign Max Time [us]                  | 0-100     | 0 - 1000 | readout only                                   |
|             | 3: Ign Max Time [us]                  | 0-100     | 0 - 1000 | set only                                       |
|             | 32: Delivered Energy<br>Thld          | 0-500J    | 1:10     | readout only                                   |
| 38          | 64: Real energy<br>delivered in pulse |           | 1:10     | readout only                                   |
|             | 33: Delivered Energy<br>Thld          | 0-500J    | 0-5000   | Set only                                       |

| Data<br>group | Channel nr /<br>description                                                                                              | integ                                                                                                                                                   | er value | Notes                                                                                  |
|---------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------|
| num           | bers in decimal format                                                                                                   | range                                                                                                                                                   | scale    |                                                                                        |
|               | 2: Temp. 1                                                                                                               | 0-100°C                                                                                                                                                 | 0-1000   |                                                                                        |
|               | 4: Temp. 2                                                                                                               | 0-100°C                                                                                                                                                 | 0-1000   | Internal temperature values for CMPC24                                                 |
| 40            | 8: Temp. 3                                                                                                               | 0-100°C                                                                                                                                                 | 0-1000   | readout only                                                                           |
|               | 16: Temp. 4                                                                                                              | 0-100°C                                                                                                                                                 | 0-1000   |                                                                                        |
|               | 32: U24                                                                                                                  | 0-100°C                                                                                                                                                 | 0-1000   |                                                                                        |
|               | 2: Temp. 1                                                                                                               | 0-100°C                                                                                                                                                 | 0-1000   |                                                                                        |
|               | 4: Temp. 2                                                                                                               | 0-100°C                                                                                                                                                 | 0-1000   | Internal temperature values of Slave 1                                                 |
| 42, 43,       | 8: Temp. 3                                                                                                               | 0-100°C                                                                                                                                                 | 0-1000   | (channel 43), Slave 2 (channel 44), Slave 3<br>(channel 45) and Slave 4 (channel 46);  |
| 44, 45        | 16: Temp.4                                                                                                               | 0-100°C                                                                                                                                                 | 0-1000   | readout only                                                                           |
|               | 32: U500                                                                                                                 | 01000V                                                                                                                                                  | 0-1000   |                                                                                        |
|               | 64: U800                                                                                                                 | 01000V                                                                                                                                                  | 0-1000   |                                                                                        |
|               | 2: read Ctrl<br>4: read Ctrl ini                                                                                         | legal values:<br>bit 0 = Display panel<br>bit 1 = Analog<br>bit 2 = RS232<br>bit 3 = Profibus<br>bit 4 = RS485<br>bit 5 = Devicenet<br>bit 6 = EtherCAT |          | present control source (Ctrl)<br>and initial control source (Ctrl ini)<br>readout only |
| 70            | 3: set Ctrl<br>5: set Ctrl ini                                                                                           |                                                                                                                                                         |          | present control source (Ctrl)<br>and initial control source (Ctrl ini)<br>set only     |
| 72            | 2: read Profibus ID<br>4: read Float Standard<br>8: read Power Scale<br>16: read Voltage Scale<br>32: read Current Scale | 0-127<br>0: Motorola, 1: Intel<br>0-65535<br>0-65535<br>0-65535                                                                                         |          | readout only                                                                           |
|               | 3: set Profibus ID<br>5: set Float Standard<br>9: set Power Scale<br>17: set Voltage Scale<br>33: set Current Scale      | 0-127<br>0: Motorola, 1: Intel<br>0-65535<br>0-65535<br>0-65535                                                                                         |          | set only                                                                               |

| Data<br>group | Channel nr /<br>description | intege                                                                                   | er value       | Notes        |
|---------------|-----------------------------|------------------------------------------------------------------------------------------|----------------|--------------|
| num           |                             | range                                                                                    | scale          |              |
|               | 2: RS Address               | 0-65535                                                                                  | 0-65535        | readout only |
|               | 4: RS Speed                 | legal values:<br>bit0="9600'<br>bit1="19200<br>bit2="38400<br>bit3="57600<br>bit4="11520 | )"<br>)"<br>)" | readout only |
| 73            | 3: RS Address               | 0-65535                                                                                  | 0-65535        | set only     |
|               | 5: RS Speed                 | legal values:<br>bit0="9600'<br>bit1="19200<br>bit2="38400<br>bit3="57600<br>bit4="11520 | )"<br>)"<br>)" | set only     |
|               | 2: DeviceNet ID             | 0-63                                                                                     | 0-63           | readout only |
| 74            | 4: DeviceNet Speed          | legal values:<br>bit0="125k"<br>bit1="250k"<br>bit2="500k"                               | ı.             | readout only |
| 74            | 3: DeviceNet ID             | 0-63                                                                                     | 0-63           | set only     |
|               | 5: DeviceNet Speed          | legal values:<br>bit0="125k"<br>bit1="250k"<br>bit2="500k"                               | ,              | set only     |
|               | 2: Errors counter           | 0-100                                                                                    | 0-100          | readout only |
|               | 4: Error Number             | 0-100                                                                                    | 0-100          | readout only |
|               | 8: Error Code               | 0-65535                                                                                  | 0-65535        | readout only |
| 90            | 16: Module ID (high word)   | 0-65535                                                                                  | 0-65535        | readout only |
|               | 32: Module ID (low word)    | 0-65535                                                                                  | 0-65535        | readout only |
|               | 64: Param (high word)       | 0-65535                                                                                  | 0-65535        | readout only |
|               | 128: Param (low word)       | 0-65535                                                                                  | 0-65535        | readout only |
|               | 5: Error Number             | 0-100                                                                                    | 0-100          | set only     |

## Examples:

First three examples are based on module 21 and the last example is based on module 22.

## Example 1

To set a new value of Ux threshold = 220V, the data group 12 and channel 3 are used. Send:

| Data group | Channels | Intege | r value |
|------------|----------|--------|---------|
| 0x0C       | 0x03     | 0x08   | 0xAC    |

Integer value=0x08AC (HEX) = 2200 (in integer format)

If value was entered properly then unit will send back a confirmation:

| Data group | Channels | Intege | r value |
|------------|----------|--------|---------|
| 0x0C       | 0x03     | 0x08   | 0xAC    |

If a non-existing channel was selected or a value is out of range then unit will reply with:

| Data group | Channels | Intege | r value |
|------------|----------|--------|---------|
| 0x0C       | OxFF     | OxFF   | OxFF    |

## Example 2

To read Break Time for cross arc detection (data group 12, channel 16): Send:

| Data group | Channels | Intege | r value |
|------------|----------|--------|---------|
| 0x0C       | 0x10     | N/a    | N/a     |

Reply received:

| Data group | Channels | Intege | r value |
|------------|----------|--------|---------|
| 0x0C       | 0x10     | 0x07   | 0xD0    |

Integer value=0x07D0 (HEX) = 2000 (dec)

As a result, Break Time for cross arc detection is 20ms.

## Example 3

In order to read Rectified mains voltage U500 (data group 42, channel 32) : Send:

| Data group | Channels | Integ | ger value |
|------------|----------|-------|-----------|
| 0x2A       | 0x20     | N/a   | N/a       |

Reply received:

| Data group | Channels | Intege | r value |
|------------|----------|--------|---------|
| 0x2A       | 0x20     | 0x15   | 0x90    |

Integer value=0x1590 (HEX) = 5520 (dec) As a result rectified mains voltage is 552V.



## Example 4

To enable UxI and disable Imax arc detection criteria (in floating-point format, Intel standard) Send:

| Senu.   |            |          |      |        |       |      |
|---------|------------|----------|------|--------|-------|------|
|         | Data group | Channels |      | Float  | value |      |
|         | 0x0A       | 0x03     | 0x40 | 0x40   | 0x00  | 0x00 |
| Reply i | received:  |          |      |        |       |      |
|         | Data group | Channels |      | Floats | alua  |      |

| Da | ta group | Channels |      | Float | value |      |
|----|----------|----------|------|-------|-------|------|
|    | 0x0A     | 0x03     | 0x40 | 0x40  | 0x00  | 0x00 |

Float value=3.0 (HEX) = 0x40400000, binary = 00000011

## Arcs Counters:

#### Module 23- Imcn

ident. 0x42,0x01,0x00,0x17 Imcn - Arc counter (Imax criterion). This module consists of two bytes which represent actual value of arc counter for Imax in a 16-bit integer. Range of arc counter is: 0 - 65535.

#### Module 24- UxIc

ident. 0x42,0x01,0x00,0x18

Uxlc - Arc counter (Uxl criterion). This module consists of two bytes which represent actual value of arc counter for Uxl in a 16-bit integer. Range of arc counter is: 0 - 65535.

## Module 25- dUcn

ident. 0x42,0x01,0x00,0x19 dUcn - Arc counter (dU criterion) – spark counter. This module consists of two bytes which represent actual value of arc counter for dU in a 16-bit integer. The range of arc counter is: 0 - 10000.

## Module 26 – Hard Arcs Counter

ident. 0x42,0x01,0x00,0x1A This module consists of two bytes which represent actual value of hard arc counter (ArcImax+ArcUxI). The range of ARC counter is: 0 - 10000.

#### Module 41 – uArcs Counter per second

ident. 0x42,0x01,0x00,0x29 This module consists of two bytes which represent actual value of micro arc (dU criterion) counter per second. The range of arc counter is: 0 - 10000.

#### Module 42 – Hard Arcs Counter per second

ident. 0x42,0x01,0x00,0x2A

This module consists of two bytes which represent actual value of hard arcs (UxI and Imax criteria) counter per second. The range of hard arcs counter is: 0 - 10000.

# Current threshold for Imax arc detection criterion:

### Module 27 - Current Imax threshold in an integer format

ident. 0x82,0x01,0x00,0x1B

This module consists of two bytes which represent current threshold value for Imax arc detection criterion in a 16-bit integer format. The scale for current setting is: 0 ... 10000 represents a current value of 0 ... In (In: nominal output current value) Range: 0.1In – 1.3In

## Module 28 - Current Imax threshold in a floating-point format

ident. 0x82,0x01,0x00,0x1C

This module consists of 4 bytes which represent current threshold value for Imax arc detection criterion in a floating-point format with respect to selected standard. This value must not exceed 1.3 In .

# <u>Current threshold for the UxI arc detection criterion:</u>

## Module 29 - Current Ix threshold in an integer format

ident. 0x82,0x01,0x00,0x1D This module consists of two bytes which represent current threshold values for UxI arc detection criterion in a 16-bit integer format. The scaling of this setting is: 0 ... 10000 represents a current value of 0 ... In (In: nominal output current value) Range: 0.1In – In (In: nominal output current value)

## Module 30 - Current Ix threshold in a floating-point format

ident. 0x82,0x01,0x00,0x1E This module consists of 4 bytes which represent current threshold value in amperes for UxI arc detection criterion in a floating-point format with respect to selected standard. This value must not exceed nominal output current of power supply - In. Range: 0.1In – In (In: nominal output current value)

## Voltage Threshold for UxI arc detection criterion:

#### Module 31 - Voltage Ux threshold in integer format

ident. 0x82,0x01,0x00,0x1F This module consists of two bytes which represent a voltage threshold value for UxI arc detection criterion in a 16-bit integer format. The scaling for this setting is: 0 ... 65535 represents a voltage value of 0.0V ... 6553.5V Range: 0 – Un (Un: nominal output voltage value)

## Module 32 - Voltage Ux threshold in a floating-point format

ident. 0x82,0x01,0x00,0x20

This module consists of 4 bytes which represent voltage threshold value in volts for Uxl arc detection criterion in a floating-point format with respect to selected standards. Range: 0 – Un (Un: nominal output voltage value)

## Internal temperature measurement

Eight temperature sensors measure temperatures inside power supply. Temperature values can be accessed by the following Profibus modules:

| Module nr | ident.              | Temp. sensor |
|-----------|---------------------|--------------|
| 33        | 0x42,0x01,0x00,0x21 | T1           |
| 34        | 0x42,0x01,0x00,0x22 | T2           |
| 35        | 0x42,0x01,0x00,0x23 | T3           |
| 36        | 0x42,0x01,0x00,0x24 | T4           |

The temperature scaling is:

0...100°C is represented by a 0...10000 integer number

## <u>Modules not used</u>

| 37 | 0x42,0x01,0x00,0x25 |
|----|---------------------|
| 38 | 0x42,0x01,0x00,0x26 |
| 39 | 0x42,0x01,0x00,0x27 |
| 40 | 0x42,0x01,0x00,0x28 |

#### How can we create an ideal Profibus communication?

Configuration of communication largely depends on the type of process, target and some additional factors. Modular construction in the Huettinger Profibus profile creates an easy method, which adapts to required processes and allows fast and flexible communication frame between magnetron power supply and control system (for example PLC). Remember that the module sequence and their quantity can be different provided there are no more than 20 modules and that a maximum input or output of bytes quantity does not exceed 80 bytes. In some cases there is a possibility of increasing the maximum amount of modules or bytes. The following examples demonstrate how to configure module(s) to personal demands.

## Which modules have higher priority?

In Huettinger Profibus profile main priority is created by a sequence of modules (the first selected module in the communication frame is also the first realized by the program). If for any reason, two or more of the same modules are selected, then the software will realize only the first one of them. The rest of the modules will be ignored (but they stay in the communication frame).

Another example is when a user selects two modules: module 2 and module 3. Both define a voltage setpoint (module 2 in an integer format, module 3 in a floating point format) and create a 6 byte output frame:

| 0   | 1     | 2        | 3 | 4 | 5 |
|-----|-------|----------|---|---|---|
| Mod | ule 2 | Module 3 |   |   |   |

Nevertheless, only module 2 will be realized because it was first selected and is first in output frame. The second one will be ignored (but it stays in the communication frame). Some groups modules have certain relationships which are divided into three groups: Group 1: modules from 2 to 7 (voltage setpoint, current setpoint, power setpoint) Group 2: modules 8 and 9 (Select control mode) Group 3: module 21 and 22 – data group between 2 – 7, kind of channels – setpoints.

Together these groups create some kind of a priority basis.

For instance, if a prepared output frame contains modules from group 1, group 2 and group 3, modules from group 2 and specific channels from group 3 will be ignored, because modules from group 1 have higher priority. The same applies when modules from group 2 and group 3 are selected, specific channels from group 3 will be ignored, because modules from group 2 have higher priority.

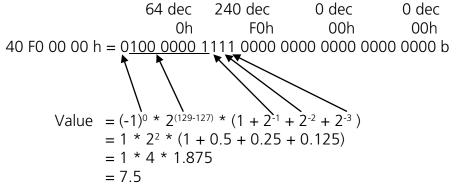
**Annotation** - modules from group 1 have a higher priority than modules from group 2 and particular channels from group 3, and group 2 has a higher priority than particular channels from group 3.

For the user's convenience, some parts of modules (especially from group 1, group 2 and group 3) are defined in two formats: integer and floating point. For the integer format an additional parameter is necessary to scale an integer to real value. This parameter is referred to as an "integer scale".

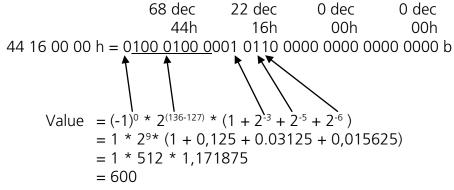
#### How to use an integer scale?

In order to precisely set or read values in such a current, voltage and power in an integer format, it is necessary to establish the proper value of three parameters in the integer scale. These parameters are: power scale (for power), current scale (for current) and voltage scale (for voltage). These parameters are all available on display panel (menu "CONTROL CFG"), RS232 protocol (word channel no.: 66, 67, 68) or Profibus (module 20 or 21, data group 72). The values of these parameters define nominal value of current (in case of current scale), power (in case of power scale) and voltage (in case of voltage scale). Example: Nominal power (Pn) for DC3025 is 25kW, nominal voltage (Vn) is 800V and nominal current (In) is 62.5A. If two decimal places are required to set and read power or current, and one decimal place is required to set and read voltage, the value of the integer scale should be set in the following manner:

Power scale = 2500, voltage scale = 8000, current scale = 6250. Another example is when DC3025 has on output of the following values: Actual voltage = 432, actual current = 32,5A, actual power = 14,04kW. Actual values can be transformed in a simple way into an integer value as shown below:Integer value of power = Pscale \* Pact / Pn = 2500 \* 14.04 / 25 = 1404 Integer value of voltage = Vscale \* Vset / Vn = 8000 \* 432 / 800 = 4320 Integer value of current = Iscale \* Iset / In = 6250 \* 32.5 / 62.5 = 3250 The integer format has one disadvantage – a constant decimal point – because of this accuracy is sometimes lost. One solution for this problem is to use a floating point number.


## How to use a floating point?

A floating point number is a 32-bit value (4 bytes), which can describe each value, both integer and fraction. Floating point number is divided into 3 parts: sign, exponent and mantissa. Below are some examples of how to use floating-point numbers.

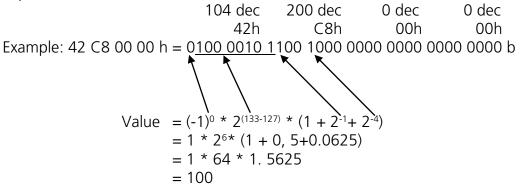

|      | byte 0                        |                | byte 1                                                         | byte 2                                               | byte3                                                             |
|------|-------------------------------|----------------|----------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|
| bit7 | bit 6                         | bit7           | bit6                                                           | bit7                                                 | bit7                                                              |
|      | bit 0                         |                | bit0                                                           | bit0                                                 | bit0                                                              |
| S    | $2^7 2^6 2^5 2^4 2^3 2^2 2^1$ | 2 <sup>0</sup> | $2^{-1}$ $2^{-2}$ $2^{-3}$ $2^{-4}$ $2^{-5}$ $2^{-6}$ $2^{-7}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $2^{-16} 2^{-17} 2^{-18} 2^{-19} 2^{-20} 2^{-21} 2^{-22} 2^{-23}$ |
| sign | n exponent                    |                | mantissa                                                       | mantissa                                             | mantissa                                                          |

Formula: Value =  $(-1)^{s} * 2^{(exponent - 127)} * (1+mantissa)$ 

## Example 1: 7.5



## Example 2: 600.0




Example 3: 10.0

$$65 \text{ dec} \quad 32 \text{ dec} \quad 0 \text{ dec} \quad 0 \text{ dec} \\ 41h \quad 20h \quad 00h \quad 00h \\ 41 \text{ 20} \text{ 00} \text{ 00} \text{ 00} \text{ 000} \text{ 0000} \text{ 00$$



## Example 4: 100.0



For more details please refer to: http://babbage.cs.qc.edu/courses/cs341/IEEE-754.html

To present a floating point number, two standards are available: Motorola and Intel.

## What is the difference between the Motorola and Intel format?

The difference between these two standards is simply merely in an adequate sequence of bytes. An example of floating point format and both standards are presented below:

|      | byte 0                        |                | byte 1                                                                          | byte 2                                             | byte3                                     |
|------|-------------------------------|----------------|---------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| bit7 | bit 6                         | bit7           | bit6                                                                            | bit7                                               | bit7                                      |
|      | bit0                          |                | bit0                                                                            | bit0                                               | bit0                                      |
|      |                               |                |                                                                                 |                                                    |                                           |
| S    | $2^7 \ 2^6 \ 2^5 \ 2^4 \ 2^3$ | 2 <sup>0</sup> | 2 <sup>-1</sup> 2 <sup>-2</sup> 2 <sup>-3</sup> 2 <sup>-4</sup> 2 <sup>-5</sup> | $2^{-8} 2^{-9} 2^{-10} 2^{-11} 2^{-11} 2^{-12}$    | $2^{-16} 2^{-17} 2^{-18} 2^{-19} 2^{-20}$ |
|      | $2^2 2^1$                     |                | 2 <sup>-6</sup> 2 <sup>-7</sup>                                                 | 2 <sup>-13</sup> 2 <sup>-14</sup> 2 <sup>-15</sup> | $2^{-21} 2^{-22} 2^{-23}$                 |
| sign | n exponent                    |                | mantissa                                                                        | mantissa                                           | mantissa                                  |

Where value =  $(-1)^{s} * 2^{(exponent - 127)} * (1+mantissa)$ 

Intel format of floating point numbers (for example like those used in Texas Instruments or Intel processors) send a less significant byte (LSB) before the most significant byte (MSB):

| byte 0 byte 1 | byte 2 | byte3 |
|---------------|--------|-------|
|---------------|--------|-------|

Motorola format of floating point format (for example used in Philips or Motorola processors) send the most significant byte (MSB) before least significant byte (LSB):

| hyte 3 hyte 2 hyte 1 hyte 0 |        |        |        |        |  |
|-----------------------------|--------|--------|--------|--------|--|
|                             |        | la. 1  |        |        |  |
|                             | ovte u | ovte i | ovte z | DVte 3 |  |
|                             | <br>   |        |        |        |  |

**Annotation**– there are no other differences between Motorola and Intel standards other than a sequence of bytes. Accuracy and principles of operation for both formats are always the same.

## **Examples**

The following examples show how to configure modules and how to use all the information which is presented below. All examples are based on the DC3025 device where nominal voltage (Un) is 800V, nominal current (In) is 62,5A and nominal power (Pn) is 25kW. Other parameters are set at following values: power scale (Pscale) is 10000, voltage scale (Vscale) is 8000 and current scale (Iscale) is 6250.

# Example 1:

This example shows how to switch on the power in the output and set the voltage to 432V, current to 32.5A and power to 14.04kW in the simplest of configurations. The following modules are selected: Module 6, Module 2, Module 4, Module 1, Module 16, Module 12, Module 14, Module 26, Module 20, Module 8.

Integer value of power setpoint = Pscale \* Pset / Pn = 10000\*14.04 / 25 = 5616The value of 5616 has a hex value of 0x15F0h.

Integer value of voltage setpoint = Vscale \* Vset / Vn =8000 \* 432 / 800 = 4320The value of 4320 has a hex value of 0x10E0h.

Integer value of current setpoint = lscale \* lset / In = 6250 \* 32.5 / 62,5 = 3250The value of 3250 has a hex value of 0x0CB2h

The created output frame which Profibus master sends to DC3025 should be:

| Bytes        | 0    | 1      | 2    | 3     | 4    | 5     | 6        | 7      | 8       | 9    |
|--------------|------|--------|------|-------|------|-------|----------|--------|---------|------|
| Modules      | Moc  | lule 6 | Mod  | ule 2 | Mod  | ule 4 | Module 1 | 1      | Module  | 8    |
| Descriptions | Po   | wer    | Volt |       |      | rent  | Control  | Select | control | mode |
| Descriptions | setp | point  | setp | oint  | setp | oint  | Bits     |        |         |      |
| Values       | 0x15 | 0xF0   | 0x10 | 0xE0  | 0x0C | 0xB2  | 0x0D     | 0x01   | 0x0F    | 0xA0 |

First six bytes represent setpoints. The next byte, according to the description of module 1, sends the bits which take control of the unit and switch on the relays and power (0x0D = binary 00001101). Last three bytes will be ignored, because module 8 belongs to group 2 in the priority basis. This group has a lower priority than group 1(modules 6, 2, 4). After this directive, unit switch off relays and set the voltage regulator to 400V.

Anotation: Setpoint requests for voltage, current and power will be ignored, but not until the Profibus master takes control of the DC3025.

Magnetron power supply responds by sending the following input frame:

| Bytes        | 0      | 1      | 2    | 3          | 4           | 5     | 6           | 7             | 8     | 9       | 10     |
|--------------|--------|--------|------|------------|-------------|-------|-------------|---------------|-------|---------|--------|
| Modules      | Modu   | ile 16 | Modu | ule 12     | Modu        | le 14 | Modu        | ıle 26        | M     | odule 2 | 0      |
| Descriptions | Actual | power  |      | ual<br>age | Act<br>curr |       | Harc<br>cou | l arc<br>nter | Ackno | owledge | e Bits |
| Values       | 0x10   | 0x00   | 0x0F | 0xA0       | 0x0A        | 0x00  | 0x00        | 0x04          | 0x0D  | 0x00    | 0x01   |

It is easy to calculate from first six bytes that:

Actual power = integer value from module 16 \* Pn / Pscale = 4096\*25/10000 = 10,24kW,

Actual Voltage = integer value from module 12 \* Vn / Vscale = 4000\*800/8000 = 400 V, Actual power = integer value from module 14 \* In / Iscale = 2560\*62.5/6250 = 25.6 A, Next two bytes show that there were four hard arcs (module 26). Last three bytes belongs to module 20 – Acknowledge bits, which inform (according to the descriptions of this module) Profibus master take the control on magnetron power supply and switch on relays and power (first byte, 0x0D = binary 00001101), and unit works on Voltage regulator (third byte). This type of configuration (if module 8 is avoided) is the most basic for controlling magnetron power supply, because it allows setting and reading actual power, current or voltage. Additionally, module 1 admits to switching on the relays and power, module 26 and 20 show status of the unit.

However, in a process only one regulator is needed, as the configuration of Profibus should be different which is depicted in the next example.

## Example 2:

This example shows how to control magnetron power supply by using only one regulator. When the following modules were selected: Module 6, Module 1, Module 16, Module 12, Module 14, Module 26, Module 20. The power was set to 12,5kW:

Integer value of power setpoint = Pscale \* Pset / Pn = 10000\*12.5 / 25 = 5000The value of 5000 has a hex value of 0x1388h.

The created output frame, which Profibus master sends to the magnetron power supply, should be:

| Bytes        | 0              | 1     | 2            |
|--------------|----------------|-------|--------------|
| Modules      | Modu           | ule 6 | Module 1     |
| Descriptions | Power setpoint |       | Control Bits |
| Values       | 0x13           | 0x88  | 0x0D         |

In this configuration, voltage and current are set to a nominal value automatically and only a power regulator controls the unit. Thus, it is easy to see that the output frame is much shorter than in previous examples (has only 3 bytes). In response the magnetron power supply sends the following input frame:

| Bytes        | 0          | 1      | 2           | 3     | 4           | 5      | 6            | 7     | 8    | 9        | 10     |
|--------------|------------|--------|-------------|-------|-------------|--------|--------------|-------|------|----------|--------|
| Modules      | Modu       | ıle 16 | Modu        | le 12 | Modu        | ıle 14 | Modu         | le 26 | N    | lodule 2 | 0      |
| Descriptions | Act<br>pov |        | Act<br>Volt |       | Act<br>curr |        | Hard<br>cour |       | Ackn | owledge  | e Bits |
| Values       | 0x13       | 0x88   | 0x10        | 0x68  | 0x0B        | 0x76   | 0x00         | 0x04  | 0x0D | 0x00     | 0x04   |

It is easy to calculate from first six bytes that:

Actual Power = integer value from module 16 \* Pn / Pscale =  $5000 \times 25/10000 = 12.5$ kW, Actual Voltage = integer value from module 12 \* Vn / Vscale =  $422 \times 800/8000 = 422$  V, Actual Current = integer value from module 14 \* In / Iscale =  $2943 \times 62.5/6250 = 29.34$  A, The remaining bytes of input frame are similar to the previous example with the exception of the last byte, which notifies that power regulator is active (0x04 = binary 00000100). In the event that a process requires two kinds of regulators, another solution should be selected.



## Example 3:

This example shows how to use module 9 (select control mode). This kind of module allows selecting the desired control mode and setting the setpoint at the same time. In this example the following modules were selected: Module 1, Module 9, Module 16, Module 12, Module 14, Module 20. The output frame which Profibus master sends to the magnetron power supply should be:

| Bytes        | 0               | 1                                              | 2    | 3    | 4    | 5    |
|--------------|-----------------|------------------------------------------------|------|------|------|------|
| Modules      | Module 1        | Module 9                                       |      |      |      |      |
| Descriptions | Control<br>Bits | Select control mode – floating point<br>format |      |      |      |      |
| Values       | 0x0D            | 0x01                                           | 0x41 | 0xCC | 0x8F | 0x5C |

The last four bytes describe a value of 25.57 in a floating-point format in Intel standard (corresponding with the descriptions above). The first byte in module 9 (and second byte in output frame) switch over unit to work in current regulator. Due to this, remaining setpoints (power and voltage) are set to their nominal values. Module 1 (first in output frame) assumes control of the unit and switches on the power and relays. In response, magnetron power supply sends following input frame:

| Bytes        | 0      | 1     | 2           | 3          | 4           | 5      | 6    | 7        | 8      |
|--------------|--------|-------|-------------|------------|-------------|--------|------|----------|--------|
| Modules      | Modu   | le 16 | Modu        | ıle 12     | Modu        | ıle 14 | N    | 1odule 2 | 0      |
| Descriptions | Actual | power | Act<br>Volt | ual<br>age | Act<br>curr |        | Ackn | owledge  | e Bits |
| Values       | 0x0C   | 0xF0  | 0x0C        | 0xA8       | 0x09        | 0xFD   | 0x0D | 0x00     | 0x02   |

It is easy to calculate from first six bytes that:

Actual power = integer value from module 16 \* Pn / Pscale = 3312\*25/10000 = 8.28kW, Actual voltage = integer value from module 12 \* Vn / Vscale = 3240\*800/8000 = 324 V, Actual current = integer value from module 14 \* In / Iscale = 2557\*62.5/6250 = 25.57 A, This time the input frame is without a Hard Arc counter (and by this is two bytes shorter). Last byte (module 20) informs us that a current regulator is active (0x02 = binary 00000010).

## Example 4:

This example shows how to use module 21 (set/read parameter in integer format) in order to create a faster interface with least amount of input and output bytes. For module 21, the upload packet sent from Profibus master to magnetron power supply contains the following information:

| 1          | 2          | 3                     | 4 |  |
|------------|------------|-----------------------|---|--|
| Data group | Channels   | Integer value         |   |  |
| Out_Byte 0 | Out_Byte 1 | Out_Byte 2 Out_Byte 3 |   |  |

And the input bytes are:

| 1          | 2         | 3 4                 |  |  |
|------------|-----------|---------------------|--|--|
| Data group | Channels  | Integer value       |  |  |
| In_Byte 0  | In_Byte 1 | In_Byte 2 In_Byte 3 |  |  |



According to the description of module 21 and module 22 (shown previously), an example of interface (outlined in steps) demonstrates how to control unit by using only one module.

Step 1: Taking control of the unit (data group 1, channel 3)

Request from PLC to magnetron power supply:

| 3          | 1 1      |               |      |  |  |  |
|------------|----------|---------------|------|--|--|--|
| Data group | Channels | Integer value |      |  |  |  |
| 0x01       | 0x03     | 0x00          | 0x01 |  |  |  |
| 1          |          |               |      |  |  |  |

Reply receive

| /ed:       |          |        |         |  |  |  |  |
|------------|----------|--------|---------|--|--|--|--|
| Data group | Channels | Intege | r value |  |  |  |  |
| 0x01       | 0x03     | 0x00   | 0x01    |  |  |  |  |

Step 2: selection of power regulator and assignment of 5kW of power (data group 2, channel 3)

Calculation for power setpoint:

Integer value of power setpoint = Pscale \* Pset / Pn = 10000\*5.0 / 25 = 2000The value of 2000 has a hex value of 0x07D0h.

Request from PLC to magnetron power supply:

| Data group | Channels | Integer value |      |  |
|------------|----------|---------------|------|--|
| 0x08       | 0x03     | 0x07          | 0xD0 |  |

Reply received:

| Data group Channels |      | Integer value |  |  |  |  |  |
|---------------------|------|---------------|--|--|--|--|--|
| 0x08                | 0x03 | 0x07 0xD0     |  |  |  |  |  |

Step 3: enabling of long ramp (data group 30, channel 3)

| Request from F | PLC to magnetron | power supply: |
|----------------|------------------|---------------|
|                |                  |               |

| Data group | Channels | Integer value |      |
|------------|----------|---------------|------|
| Ox1E       | 0x03     | 0x00          | 0x01 |

Reply received:

| cu.        |          |        |         |
|------------|----------|--------|---------|
| Data group | Channels | Intege | r value |
| 0x1E       | 0x03     | 0x00   | 0x01    |

#### Step 4: enabling dU and Imax criterions, disabling UxI criterion (data group 10, channel 3)

Last byte switches on dU and Imax criteria (for arc detection) and switches off UxI criterion. (0x05 = binary 00000101).

Request from PLC to magnetron power supply:

| Data group | Channels | Integer value |      |
|------------|----------|---------------|------|
| 0x0A       | 0x03     | 0x00          | 0x05 |

Reply received:

| veu.       |          |        |         |
|------------|----------|--------|---------|
| Data group | Channels | Intege | r value |
| 0x0A       | 0x03     | 0x00   | 0x05    |

Reply

### Step 5: set the dUoff parameters to 100V(data group 11, channel 3)

Last byte sets dUoff parameters to 100V. The value of 100 has a hex value of 0x0064h. Request from PLC to magnetron power supply:

|           | Data group | Channels | Intege | r value |  |
|-----------|------------|----------|--------|---------|--|
|           | 0x0B       | 0x03     | 0x00   | 0x64    |  |
| received: |            |          |        |         |  |
|           | Data group | Channels | Intege | r value |  |
|           | 0x0B       | 0x03     | 0x00   | 0x64    |  |

Step 6: Switch on Power (data group 1, channel 3)

Last byte switches on relays and power. (0x0D = binary 00001101). Request from PLC to magnetron power supply:

| Data group | Channels | Integer value |      |
|------------|----------|---------------|------|
| 0x01       | 0x03     | 0x00          | 0x0D |
| 1          |          |               |      |

Reply received:

| cu.        |          |               |      |
|------------|----------|---------------|------|
| Data group | Channels | Integer value |      |
| 0x01       | 0x03     | 0x00          | 0x0D |
|            |          |               |      |

### Step 7: Readout of actual power (data group 2, channel 4)

Request from PLC to magnetron power supply:

| Data group | Channels | Integer value |     |
|------------|----------|---------------|-----|
| Data group | Спаннсіз | integer value |     |
| 0x02       | 0x04     | N/a           | N/a |

Reply received:

| Data group | Channels | Intege | r value |
|------------|----------|--------|---------|
| 0x02       | 0x04     | 0x11   | 0xD0    |
|            |          |        |         |

Last two bytes contain information about actual power (The value of 0x11D0 in hex has a decimal value of 4560). It is easy to calculate that:

Actual power = integer value from module 16 \* Pn / Pscale = 4560\*25/10000 = 11.4 kW,

Step 8: Readout of actual current (data group 4, channel 4)

Request from PLC to magnetron power supply:

| Data group | Channels | Integer value |     |
|------------|----------|---------------|-----|
| 0x04       | 0x04     | N/a           | N/a |
| ivod:      |          | •             |     |

Reply received:

| Data group | Channels | Intege | r value                                        |
|------------|----------|--------|------------------------------------------------|
| 0x04       | 0x04     | 0x06   | 0x22                                           |
|            |          | / .    | ( <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>1</u> |

Last two bytes contain information about actual power (value of 0x0622 in hex has a decimal value of 1570). It is easy to calculate that:

Actual power = integer value from module 16 \* Pn / Pscale = 1570\*62.5/6250 = 15.7 A,

Step 9: Readout of acknowledgement bits0 (data group 1, channel 4)

Request from PLC to magnetron power supply:



TruPlasma Highpulse 4000 NEW Series

| Data group | Channels | Intege | r value |
|------------|----------|--------|---------|
| 0x01       | 0x04     | N/a    | N/a     |

Reply received:

| vcu.     | •          |          |        |         |  |
|----------|------------|----------|--------|---------|--|
| D        | )ata group | Channels | Intege | r value |  |
|          | 0x01       | 0x04     | 0x00   | 0x0D    |  |
| <u> </u> |            |          |        |         |  |

Last byte informs us that relay and power is switched on (0x0D = binary 00001101).

We can observe that all parameters can be changed by using this one module.

An additional advantage of this configuration, is the handshake quality – in first two bytes of input frame an echo of last command is sent back. On account of this the PLC receives confirmation that command was accepted. Since a response to the request is generated automatically, (sometimes even 1 ms later) the entire communication process works exceptionally fast. If orders are sent one by one, then entire process can be achieved at an incredible speed. Only Profibus baud rate and number of slaves in field can limit this.

### Example 5:

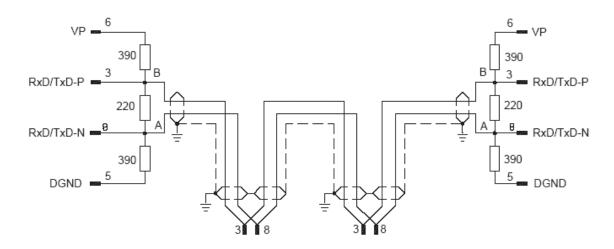
Last example shows how to use module 21 (set/read parameter in integer format) with other modules. The following modules were selected in this example: Module 6, Module 29, Module 21, Module 12, Module 14, Module 20. The output frame which Profibus master sends to the magnetron power supply is:

| Bytes        | 0        | 1        | 2                         | 3         | 4         | 5              | 6       | 7     |  |
|--------------|----------|----------|---------------------------|-----------|-----------|----------------|---------|-------|--|
| Modules      | Module 6 |          | Module 29                 |           | Module 21 |                |         |       |  |
| Descriptions | Ροι      | wer      | Current Ix Set/read param |           |           |                | aramete | er in |  |
| Descriptions | setp     | setpoint |                           | threshold |           | integer format |         |       |  |

First two bytes set power and automatically switch unit to power regulator. Next two bytes allow to control the level of current threshold for Uxl arc detection criterion. The control bits are available via module 21 (last four bytes in input frame). Other parameters are also accessible in this module if necessary. In response, magnetron power supply sends out the following input frame:

| Bytes        | 0      | 1      | 2                     | 3   | 4     | 5                | 8 | 9   | 10       | 11      | 12   |
|--------------|--------|--------|-----------------------|-----|-------|------------------|---|-----|----------|---------|------|
| Modules      | Modu   | ıle 12 | 2 Module 14 Module 20 |     | 0     | Module 21        |   |     |          |         |      |
| Descriptions | Actual |        | Actual                |     | Ackn  | novuladaa Pita   |   | Set | /read pa | aramete | r in |
| Descriptions | Volt   | age    | curr                  | ent | ACKII | Acknowledge Bits |   |     | integer  | format  |      |

First four bytes show actual value of voltage and current (in an integer format). They can be used to calculate actual power (this is why the module of actual power is omitted). The next three bytes represent Acknowledge bits, which show status of magnetron power supply. Last four bytes belong to module 21. This example shows how different modules can replace other modules and maintain their usability as well as flexibility.


<u>Remember</u> – These are only several possible examples. The true combination of solutions is as endless as the user's imagination and we only attempt to provide you with the perfect tool to create your own personal profile for any specific processes.

# Profibus safety

In the event that Profibus slave loses connection with master or when the master stops communicating, the power supply turns off its output power and waits until communication is restored or until another control source is selected.

# Physical layer and configuration of TruPlasma Highpulse

In order to connect the power supply with the Profibus, an isolated RS-485 interface (according to EN 50170) is required. Please make certain that termination resistors are affixed at both ends of the cable. If special Profibus connectors are being used, the resistors found inside the connector must be switched on. The cable shield should be firmly connected to ground in every device. Make sure that there is no potential difference between grounds in devices.



# GSD files

GSD (Electronic data sheet of a device) files contain and describe the functions and character of the Profibus device. In order to use this unit in a PROFIBUS system, it needs to have a specific GSD file that is compatible with the unit.

Please be advised to only use the GSD file, which comes delivered with your power supply.

## Specification for Profibus slave TruPlasma Highpulse:

Configuration data: in accordance with GSD file (AC0A31.gsd) Technology: ASIC Physical separation fieldbus side: Standard Baud rate for RS485: Automatic detection up to 12 Mbaud Sync: Supported Freeze: Supported Primitive fieldbus ID: 120 Dipswitch: Supported

# 8. Warning and alarm messages

Error codes description.

| Error Number | Description                                             |
|--------------|---------------------------------------------------------|
| 61601        | EEPROM Error                                            |
| 61602        | Wrong checksum of data stored in EEPROM                 |
| 61603        | FPGA configuration failed                               |
| 61604        | Unexpected reset of HVPSx module                        |
| 61605        | Too high supply voltage (24V)                           |
| 61606        | Too low supply voltage (24V)                            |
| 61607        | Over temperature                                        |
| 61608        | no communication with DataFlash device                  |
| 61609        | Mains voltage sag detected                              |
| 61610        | no communication with HVPS module or Main control board |
| 61611        | no communication with actual control source             |
| 61612        | no communication with generator(s) in Parallel Work     |
| 61613        | no communication with Actual Control Source             |
| 61614        | internal communication fail                             |
| 61615        | Unexpected device detected on Parallel Bus              |
| 61616        | U500 Voltage too low                                    |
| 61617        | U500 Voltage too high                                   |
| 61618        | Inverter Error                                          |
| 61619        | U800 Voltage too low                                    |
| 61620        | U800 Voltage too high                                   |
| 61621        | Too high U800 voltage during Power On sequence          |
| 61622        | CAN configuration error                                 |
| 61623        | No Load                                                 |
| 61624        | Short Circuit                                           |
| 61625        | Arc Density exceeded the limit                          |
| 61626        | PLD software version is too old                         |
| 61627        | CLC switching frequency too high                        |
| 61628        | CLC shorted                                             |
| 61629        | Unsupported Parallel Mode configuration                 |
| 61630        | Global Line Active.                                     |
| 61631        | Too low temperature of inlet water                      |
| 61632        | Wrong configuration                                     |
| 61633        | U500fast high                                           |
| 61634        | dU500/dt high                                           |
| 61635        | U800fast high                                           |
| 61636        | dU800/dt high                                           |
| 61637        | Parallel Mode Malfunction                               |
| 61638        | Parallel connection failed                              |
| 61639        | User24 checksum error                                   |
|              |                                                         |
| 61640        | Unequal current in HVPS modules                         |

# Warning codes description.

| Warning Number | Description                                                         |
|----------------|---------------------------------------------------------------------|
| 61651          | No data In memory banks – default restored                          |
| 61652          | Checksum error in memory bank                                       |
| 61653          | EEPROM write error                                                  |
| 61654          | Arc Density exceeded the limit                                      |
| 61655          | Recalibration done                                                  |
| 61656          | Unauthorized recalibration attempt                                  |
| 61657          | Temperature warning level exceeded                                  |
| 61658          | Cooling water flow is too low                                       |
| 61659          | Cooling water flow wrong direction                                  |
| 61660          | CSPC communication fail                                             |
| 61661          | Control source communication fail                                   |
| 61662          | communication fail with other Power supplies in parallel operation  |
| 61663          | communication fail with actual control source                       |
| 61664          | New version of memory map in EEPROM                                 |
| 61665          | Exceeded maximum allowable difference between set and actual values |
| 61666          | Plasma not detected                                                 |
| 61667          | PlossMax value reached. Power loss cannot be compensated properly   |
| 61668          | Internal I <sup>2</sup> C bus configuration fail                    |
| 61669          | Internal CAN bus configuration fail                                 |

# 9. Interface software

# 9.1. PVD Power

Attached CD includes PVD Power control software.

Note: PVD Power requires .NET Framework version 4.0. Microsoft .NET Framework Version 4.0 Redistributable Package (x86) is available at Microsoft Download Center: <u>http://www.microsoft.com/en-us/download/details.aspx?id=17718</u>

## System requirements

## Supported operating systems:

- o Windows XP SP3
- o Windows Server 2003 SP2
- o Windows Vista SP1 or later
- Windows Server 2008 (not supported on Server Core Role)
- o Windows 7
- o Windows Server 2008 R2 (not supported on Server Core Role)
- o Windows 7 SP1
- o Windows Server 2008 R2 SP1

## Supported Architectures:

- o x86
- o x64
- o ia64 (some features are not supported on ia64 for example, WPF)

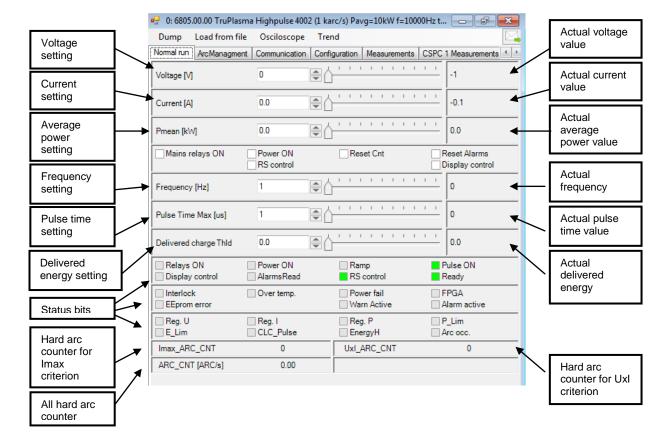
### Hardware Requirements:

- o Recommended Minimum: Pentium 1 GHz or higher with 512 MB RAM or more
- o Minimum disk space:
- o x86 850 MB
- o x64 2 GB

### Prerequisites:

o Windows Installer 3.1 or later

In order to activate PVD Power software, "PVDPower\_x.xx.exe" file must be running.


Press "options" button to configure RS232.

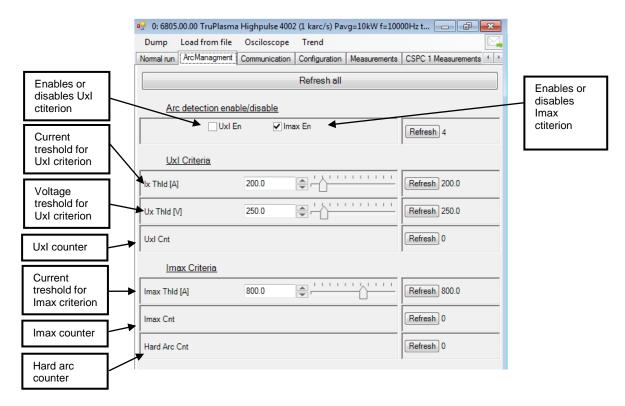
Please do not change the last six parameters or save their default settings. When RS232 is configured, push "start" button to initiate communication with TruPlasma Highpulse unit.

| PVDPower ver.1.23.0.29 |                                                                                                                                                                                                         |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | sb Tools<br>rofibus<br>Start Stop Configuration                                                                                                                                                         |
|                        | Rs   Port name   COMI   Baud rate   115200   Frame sending delay [ms]   Normal run   250   Channels reading   0   Channels writing   30   Oscilloscope   0   Frame sending timeout [ms]   Timeout   500 |



### Normal Run




Normal run tab contains basic controls and readouts.

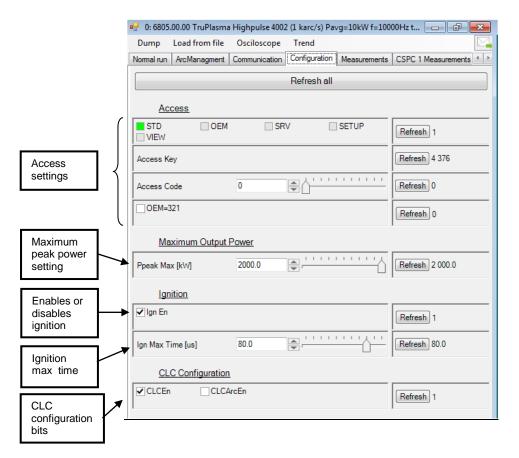
Other tabs are available after entering the password – 321.

| - | PV   | DPower | ver.1.23.0.2 | 9        |           |        |       |    |    |               |
|---|------|--------|--------------|----------|-----------|--------|-------|----|----|---------------|
|   | File | RS     | Profibus     | EtherCAT | DeviceNet | Usb    | Tools |    |    |               |
|   |      | Mode   |              |          |           | Profib | ous   |    |    |               |
|   |      | Trace  | St           | ор       | Options   |        | Start | St | ор | Configuration |
| L |      | Exit   |              |          |           |        |       |    |    |               |
|   |      |        |              |          | Password  |        | ОК    |    |    |               |



### Arc Management






## **Communication**

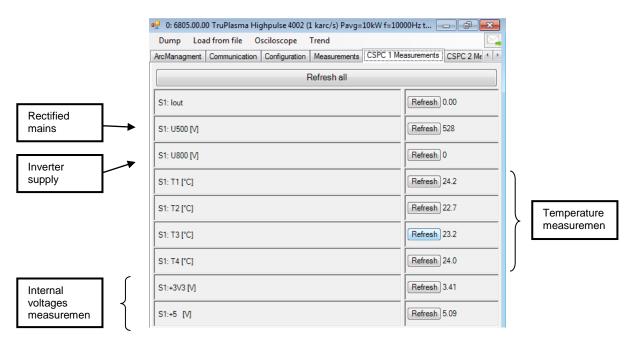
|                | 🖳 0: 6805.00.00 TruPlasma Highpulse 4002 (1 karc/s) Pavg=10kW f=10000Hz t 💼 💼 💌      |                           |
|----------------|--------------------------------------------------------------------------------------|---------------------------|
|                | Dump Load from file Osciloscope Trend                                                |                           |
|                | Normal run ArcManagment Communication Configuration Measurements CSPC 1 Measurements |                           |
|                | Refresh all                                                                          |                           |
|                | Initial Control Source                                                               |                           |
|                | Display ini Analog ini RS232 ini Profibus ini RS485 ini                              | Initial control<br>source |
|                | Actual Control Source                                                                | Initial control           |
|                | □Display □Analog ✔RS232 □Profibus<br>RS485                                           | source                    |
|                | Communication Timeout [s] 0 Refresh 0                                                |                           |
| RS adress      | <u>RS232</u>                                                                         |                           |
| setting        | RS Address 0                                                                         |                           |
| RS<br>boudrate | 9600 19200 38400 57600 Refresh 16                                                    |                           |
| setting        | Profibus                                                                             |                           |
|                | PB ID 120 Refresh 120                                                                |                           |
|                | Actual PB ID Refresh 120                                                             |                           |
|                | PB PowerScale 10000                                                                  |                           |
|                | PB VoltageScale 10000                                                                |                           |
|                | PB CurrentScale 10000 Refresh 10 000                                                 |                           |
|                | 0=Intel, 1=Mot                                                                       |                           |
|                |                                                                                      |                           |



### **Configuration**



# CLC Configuration


| Control bits setting | Function                     |
|----------------------|------------------------------|
| CLC Configuration    | CLC disabled                 |
| CLC Configuration    | CLC after each<br>pulse      |
| CLC Configuration    | CLC only after<br>arc occurs |
| CLC Configuration    | CLC only after<br>arc occurs |

## **Measurements**

| 🖳 0: 6805.00.00 TruPlasma Highpulse 4002 (1 karc/s) Pavg=10kW f=10 | 0000Hz t 🗖 💼 🔀        |                                    |
|--------------------------------------------------------------------|-----------------------|------------------------------------|
| Dump Load from file Osciloscope Trend                              |                       |                                    |
| Normal run ArcManagment Communication Configuration Measurement    | S CSPC 1 Measurements |                                    |
| Refresh all                                                        |                       |                                    |
| Serial Number                                                      | Refresh 4 294 967 295 | Serial                             |
| DSP software ver.                                                  | Refresh 1 411 240     |                                    |
| PLD software ver.                                                  | Refresh 1 411 244     |                                    |
| DSP Device Type                                                    | Refresh 0x6805        |                                    |
| PLD Device Type                                                    | Refresh 0x6805        |                                    |
| DA software ver.                                                   | Refresh 141 024.1     | Software version                   |
| DA xml ver.                                                        | Refresh 1 300.004     |                                    |
| CSPC1 software ver.                                                | Refresh 1 311 041     |                                    |
| CSPC2 software ver.                                                | Refresh 1 311 041     |                                    |
| User software ver.                                                 | Refresh 50            | Maximum<br>peak power              |
| Ppeak Act.                                                         | Refresh 0.00          | value                              |
| +24V                                                               | Refresh 23.97         | Internal<br>power supply<br>output |
| +8V                                                                | Refresh 8.69          | ouipui                             |
| +15V                                                               | Refresh 14.97         |                                    |

| Dump Load from file Osciloscope Tre               |                                          |    |                      |
|---------------------------------------------------|------------------------------------------|----|----------------------|
| lormal run   ArcManagment   Communication   Confi | guration Measurements CSPC 1 Measurement | ts |                      |
| +24V                                              | Refresh 23.97                            |    |                      |
| +8V                                               | Refresh 8.69                             |    |                      |
| +15V                                              | Refresh 14.97                            |    |                      |
| +5VA                                              | Refresh 4.98                             |    |                      |
| +5V                                               | Refresh 4.97                             |    |                      |
| +3V3                                              | Refresh 3.35                             |    | Latana at            |
| Vbat                                              | Refresh 0.01                             |    | Internal<br>voltages |
| +2V5                                              | Refresh 2.58                             |    |                      |
| +1V9                                              | Refresh 1.96                             |    |                      |
| +1V2                                              | Refresh 1.23                             |    |                      |
| -5VA                                              | Refresh -5.04                            |    |                      |
| -15V                                              | Refresh -15.15                           |    |                      |
| T1 [°C]                                           | Refresh 23.58                            |    |                      |
| T2 [°C]                                           | Refresh 23.92                            |    | Temperature          |
| T3 [°C]                                           | Refresh 23.31                            |    | measuremen           |
| T4 [°C]                                           | Refresh 23.07                            | Į  |                      |
| L12 (RMS) [V]                                     | Refresh 413.9                            |    |                      |
| L23 (RMS) [V]                                     | Refresh 429.0                            |    | Mains<br>voltage     |
| L31 (RMS) [V]                                     | Refresh 414.0                            |    | L                    |

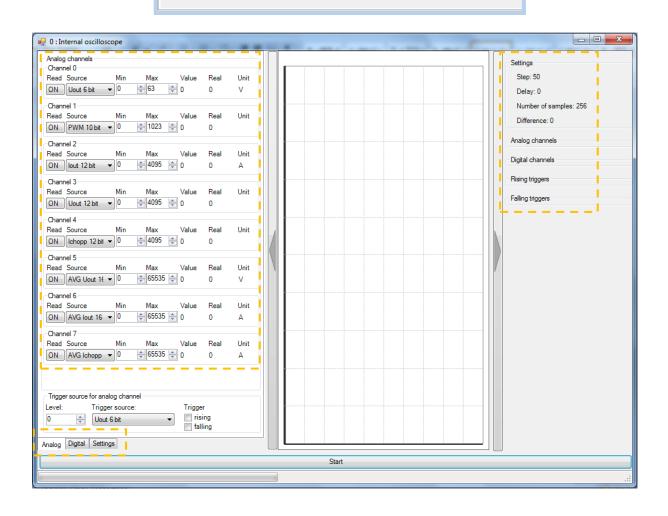
#### **CSPC** Measurements



# 9.2. PVD Power oscilloscope

In order to run PVD Power oscilloscope, PVD Power has to be run.

| PVDPower ver.1.23.0.29                                      | <b>X</b>                                                                                                                                                                           |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File RS Profibus EtherCAT Devic<br>RS<br>Start Stop Options | Profibus                                                                                                                                                                           |
|                                                             | Rs Port name COM1 Baud rate 115200 Frame sending delay [ms] Normal run 250 Channels reading 0 Channels writing 30 Channels writing 30 Frame sending timeout [ms] Timeout Cancel OK |


| Normal run                   |                         |    |                        |                                 |
|------------------------------|-------------------------|----|------------------------|---------------------------------|
| Voltage [V]                  | 0                       |    |                        | <br>296                         |
| Current [A]                  | 0,0                     | ₽ſ |                        | <br>-50,7                       |
| Pmean [kW]                   | 0,0                     |    |                        | <br>0,0                         |
| Mains relays ON<br>Save      | Power ON<br>RS control  |    | Reset Cnt              | Reset Alarms<br>Display control |
| Frequency [Hz]               | 1                       |    |                        | <br>0                           |
| Pulse Time Max [us]          | 1                       | ₽¢ |                        | <br>0                           |
| Relays ON<br>Display control | Power ON AlarmsRead     |    | Ramp<br>RS control     | Pulse ON<br>Ready               |
| Interlock<br>EEprom error    | Over temp.<br>Not Saved |    | Power fail Warn Active | FPGA<br>Alarm active            |
| Reg. U<br>EOTL               | Reg. I<br>EOJM          |    | Reg. P<br>EOPT         | Pcomp<br>Arc occ.               |
| Ppeak Actual                 | 0.00                    |    | Imax_ARC_CNT           | 42 045                          |
| UxI_ARC_CNT                  | 28 737                  |    | dU_uARC_CNT            | 0                               |
| ARC_CNT [ARC/s]              | 0,00                    |    | dUcnt[x100]            | 0                               |
| Ichopp [A]                   | 0,00                    |    | lout CSPC1 [A]         | -50,72                          |
| lout CSPC2 [A]               | 0,00                    |    |                        |                                 |

Oscilloscope is available after entering the password – 321.

| PVI  | DPower | ver.1.23.0.2 | 29       |           |        |       |     |    |               |
|------|--------|--------------|----------|-----------|--------|-------|-----|----|---------------|
| File | RS     | Profibus     | EtherCAT | DeviceNet | Usb    | Tools |     |    |               |
|      | Mode   |              |          |           | Profib | us    |     |    |               |
|      | Trace  | St           | top      | Options   |        | Start | Sto | ор | Configuration |
| Ľ    | Exit   |              |          |           |        |       |     |    |               |
|      |        |              |          |           | Dares  |       | ×   |    |               |
|      |        |              |          |           | Passw  | /ora  | ОК  |    |               |

#### TruPlasma Highpulse 4000 NEW Series

| Dump               | Load from file | e Osciloscope           | Tren  | d          |                     |      |         |                                 |
|--------------------|----------------|-------------------------|-------|------------|---------------------|------|---------|---------------------------------|
| Normal run         | ArcManagmen    | t Start                 | infig | juration   | Measuren            | ents | Calibra | tion Regulatory 1               |
| Voltage [V]        |                | 0                       |       | 1 1 1      | 1 1 1               | 1 1  | 1 1     | -296                            |
| Current [A]        | l              | 0,0                     |       | 1 1 1      | 1 1 1               | 1 1  | 1 1     | 1,0                             |
| Pmean [k\/         | Ŋ              | 0,0                     |       | 1 1 1      | 1 1 1               | 1 1  | 1 1     | 0,0                             |
| Mains ro<br>Save   | elays ON       | Power ON<br>RS control  |       | Res        | et Cnt              |      |         | Reset Alarms<br>Display control |
| Frequency [Hz] 1   |                |                         |       | 1 1 1      | 1 1 1               | 1 1  | 1 1     | 0                               |
| Pulse Time         | e Max [us]     | 1                       |       | 1 1 1      | 1 1 1               | 1 1  | 1 1     | 0                               |
| Relays             |                | Power ON<br>AlarmsRead  |       | Ram        | ip<br>control       |      |         | Pulse ON<br>Ready               |
| Interloci          |                | Over temp.<br>Not Saved |       |            | er fail<br>n Active |      |         | PGA<br>Narmactive               |
| Reg. U             |                | Reg. I<br>EOJM          |       | Reg<br>EOF |                     |      |         | <sup>2</sup> comp<br>Arc occ.   |
| Ppeak Act          | tual           | 0,00                    |       | lmax_      | ARC_CN              | Γ    |         | 9 602                           |
| UxI_ARC_CNT 40 126 |                |                         |       | dU_u/      | ARC_CNT             |      |         | 0                               |
| ARC_CNT            | [ARC/s]        | 0,00                    |       | dUcnt      | [x100]              |      |         | 0                               |
| Ichopp [A]         |                | 0,00                    |       | lout C     | SPC1 [A]            |      |         | -12,69                          |
| lout CSPC          | 1A1 C*         | 0.00                    |       |            |                     |      |         |                                 |

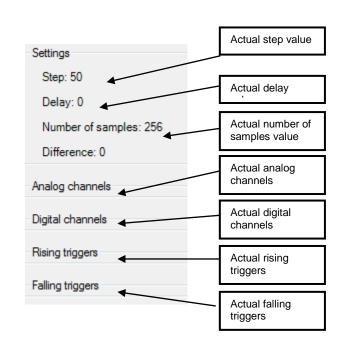




Channel Analog channels Measuring range Channel 0 Read | Source I Min Max Value Real Unit Enebling/disablin g measurement **+** 0 <del>\$</del>63 ÷ 0 0 ON Uout 6 bit V Channel 1 П н Read Source Min Max Value Real Unit Ш 0 ÷ 1023 ON PWM 10 bit ÷ 0 0 ۲I Channel 2 H Read Source Min Value Unit Max Real 0 ON lout 12 bit ÷ 4095 \* 0 0 А T Channel 3 П П Min I Read Source Max Value Real Unit ł 0 ÷ 4095 ÷ ON Uout 12 bit 0 0 Channel 4 11 11 Read Source Min Value Real Unit Max н 4095 0 ÷ ON I Ichopp 12 bit 0 0 7 Channel 5 Ħ Read Source Min Max Value Real Unit ON AVG Uout 16 ľ 0 🔶 65535 🚔 0 0 V Channel 6 Π П Min Read Source Max Value Real Unit † 0 🔶 65535 👙 0 ON AVG lout 16 0 А Channel 7 Min Read Source Max Value Real Unit 0 🔶 65535 🚖 ON AVG Ichopp 0 0 А Y H 11 Trigger source for analog channel Level: Trigger source: Trigger rising 0 Uout 6 bit -Ŧ falling

Analog tab contains basic controls and readouts

Maximum values


6 bit sources 63

12 bit sources 4095

16 bit sources 65535



TRUMPF



|                         |   |                  |         |          | Slope |
|-------------------------|---|------------------|---------|----------|-------|
| Digital channels        |   | Digital triggers |         | $\leq$   |       |
| ON XINT1                | ? | 🔲 Rising         | Falling | <b>Î</b> |       |
| ON chopp01              | ? | 🔲 Rising         | Falling |          |       |
| ON chopp11              | ? | 🔲 Rising         | Falling |          |       |
| ON chopp21              | ? | 🔲 Rising         | Falling |          |       |
| ON chopp31              | ? | 🔲 Rising         | Falling |          |       |
| ON imp_s                | ? | 🔲 Rising         | Falling |          |       |
| ON imp_p                | ? | 🔲 Rising         | Falling |          |       |
| ON AD dU                | ? | 🔲 Rising         | Falling |          |       |
| ON AD Imax              | ? | 🔲 Rising         | Falling |          |       |
| ON AD UxI               | ? | 🔲 Rising         | Falling |          |       |
| ON Power On             | ? | 🔲 Rising         | Falling |          |       |
| ON Pulse start          | ? | 🔲 Rising         | Falling |          |       |
| ON Pulse desense        | ? | 🔲 Rising         | Falling |          |       |
| ON 13                   | ? | 🔲 Rising         | Falling |          |       |
| ON 14                   | ? | 🔲 Rising         | Falling |          |       |
| ON 15                   | ? | 🔲 Rising         | Falling |          |       |
| ON 16                   |   | 🔲 Rising         | Falling |          |       |
| Analog Digital Settings |   |                  |         |          |       |

Digital tab contains basic controls and readouts



Settings tab contains basic controls and readouts.

| Step settings<br>1step = 20ns          | Settings     | umber of samples 256 🔹 | Samples settings:<br>always 256 |
|----------------------------------------|--------------|------------------------|---------------------------------|
| Delay settings:<br>delay<br>value*step | Delay 0      |                        |                                 |
|                                        | Auto refresh |                        |                                 |
|                                        | Energy       |                        |                                 |
|                                        | Calculate    |                        |                                 |
|                                        | p1= ?        |                        |                                 |
|                                        | p2= ?        |                        |                                 |
|                                        | E= ?         |                        |                                 |
|                                        | Borders      |                        |                                 |
|                                        | dU_ON_Thid   |                        |                                 |
|                                        | dU_OFF_Thld  |                        |                                 |
|                                        | Ux_Thld      |                        |                                 |
|                                        | Ix_ThId      |                        |                                 |
|                                        | Imax_ThId    |                        |                                 |



Example how to set oscilloscope.

Step1.

Choose source for the oscilloscope channel.

Step2.

Enable channels by clicking ON buttons. Button will change color. Corresponding curve on the oscilloscope will get the same color as ON button.

Step3.

Choose display limits. Note, that 12-bit ADC gets value in the range 0-4095, and 6-bit ADC - 0-63.

| Step 1 | Analog channels          |     |             |       |      |      |
|--------|--------------------------|-----|-------------|-------|------|------|
| Step 2 | Read Source              | Min | Max         | Value | Real | Unit |
|        | ON Uout 12 bit           | jo  | 4095        | 0     | 0    |      |
|        | Channel 1<br>Rea: Source | Min | Max         | Value | Real | Unit |
|        | ON I lout 12 bit         | 0   | <b>4095</b> | 0     | 0    | А    |
|        | Channel 2<br>Rea: Source | Min | Max         | Value | Real | Unit |
|        | ON lout 12 bit           | 0   | <b>4095</b> | 0     | 0    | А    |
|        | Channel 3<br>Rea: Source | Min | Max         | Value | Real | Unit |
|        | ON Uout 12 bit           | 0   | 4095        |       | 0    | Unit |
|        |                          |     |             |       |      |      |
|        |                          |     |             |       |      |      |
| /      |                          |     |             |       |      |      |
| Step 3 |                          |     |             |       |      |      |

Step4. Enable the trigger.

Step5. Push the Start button.

### TruPlasma Highpulse 4000 NEW Series

| • 0 : Internal oscillosco |     | Digital triggers |           |   |   |           | $\square$ |                                         |   |
|---------------------------|-----|------------------|-----------|---|---|-----------|-----------|-----------------------------------------|---|
| ON XINT1                  | _   | Rising           | Falling   |   |   |           |           | Settings<br>Step: 50                    |   |
| ON chopp01                |     | Rising           | E Falling | H |   |           |           | Delay: 0                                |   |
| ON chopp11                |     | Rising           | Falling   | F |   |           |           | Number of samples: 256<br>Difference: 0 |   |
| ON chopp21                | ?   | Rising           | Falling   | F |   |           |           | Analog channels                         |   |
| ON chopp31                |     | Rising           | Falling   | F |   |           |           | lout 12 bit 1 22                        | 7 |
| ON imp_s                  |     | Rising           | Falling   |   |   |           |           | Uout 12 bit 708                         |   |
| ON imp_p                  | ×   | Rising           | Falling   | F |   |           |           | Digital channels<br>imp_s 1             |   |
|                           |     | Rising           | Falling   | F |   |           |           | Rising triggers                         |   |
| p 4 <sub>D Imax</sub>     |     | Rising           | Falling   | F | 1 |           |           | imp_s                                   |   |
| ON AD Uxl                 |     | Rising           | E Falling |   |   |           |           | Falling triggers                        |   |
| ep 5 ower On              | ?   | Rising           | E Falling | F |   |           |           |                                         |   |
| ON Pulse start            | ?   | Rising           | 🔲 Falling | F |   |           |           |                                         |   |
| ON Pulse desense          | ?   | Rising           | Falling   | F |   |           |           |                                         |   |
| ON 13                     | ?   | Rising           | Falling   | F |   | Mannununu |           |                                         |   |
| ON 14                     | ?   | Rising           | Falling   | 5 |   |           |           |                                         |   |
| ON 15                     | ?   | Rising           | Falling   | 5 |   |           |           |                                         |   |
| ON 16                     | Y I | Rising           | Falling   |   |   |           |           |                                         |   |
| Analog Digital Settings   |     |                  |           |   |   |           |           |                                         |   |
|                           |     |                  |           |   |   | Start     |           |                                         |   |

## Step 7.

Change settings and push the start button again to see whole pulse.

| Settings     |                         |
|--------------|-------------------------|
| Step 100 🚔   | Number of samples 256 - |
| Delay 100 🚔  |                         |
| Auto refresh |                         |



lout 12bit – output current

Uout 12bit – output voltage

imp\_s – digital signal; equals 1 during pulse; it's useful to trigger

# 9.2. Terms and conditions for the licensing of software

GENERAL TERMS AND CONDITIONS FOR THE LICENSING OF SOFTWARE OF TRUMPF Huettinger Sp. z o. o.

HUETTINGER grants to the HUETTINGER FREEWARE USER the following limited, non-transferable and non-exclusive rights in respect of HUETTINGER FREEWARE.

# 1. DEFINITIONS

(a) "HUETTINGER" means TRUMPF Huettinger Sp. z o. o., Zielonka, Poland.

(b) "HUETTINGER FREEWARE" means software developed by HUETTINGER and marked as freely available by HUETTINGER by means of the designation HUETTINGER FREEWARE.

(c) "USER" means those authorised users who have received the HUETTINGER FREEWARE from HUETTINGER and are identified as such by HUETTINGER.

## 2. SCOPE OF APPLICATION

The below mentioned Terms and Conditions apply to the surrender of use (licensing) of HUETTINGER FREEWARE to the USER.

## 3. OBJECT OF LICENSE

The object of the License is exclusively HUETTINGER FREEWARE.

HUETTINGER and USER agree that HUETTINGER FREEWARE is protected by copyright laws. Irrespective of a copyright notice, HUETTINGER FREEWARE represents particular technical knowledge (know-how) which must be kept secret from unauthorised third parties. These Terms and Conditions also apply to updates issued at a later date.

## 4. LICENSE RESTRICTIONS

(a) The USER may utilise HUETTINGER FREEWARE for demonstration purposes, for commissioning and for the regular operations of HUETTINGER generators. The USER is prohibited from making any copies of the HUETTINGER FREEWARE, to trade therein or to transfer same electronically from one computer to another or via a network without the written permission of HUETTINGER.

(b) All the copyrighted information and external links of HUETTINGER FREEWARE may not be changed or deleted.

(c) The USER is not permitted to use HUETTINGER FREEWARE to develop products which have the same or primarily the same functions as HUETTINGER FREEWARE.

(d) The USER is not permitted to change, assemble, modify, adapt or translate HUETTINGER FREEWARE. Equally, decompilation, reverse engineering, disassembly or other reduction of the HUETTINGER FREEWARE in a noticeable form is prohibited.

# 5. COPYRIGHT AND INTELLECTUAL PROPERTY

HUETTINGER FREEWARE is protected by both copyright laws and international copyright agreements as well as by the laws and contracts applicable to intellectual property. The User merely acquires a license in the HUETTINGER FREEWARE and not ownership thereof. No rights accrue to the USER in regard to the know-how, trademark, other protective rights or services of HUETTINGER. HUETTINGER claims for itself all rights to intellectual property, including copyrights and trademark rights.

## 6. NO WARRANTY

The USER accepts the HUETTINGER FREEWARE "as is" and HUETTINGER provides no warranty whatsoever pertaining to function, performance or other. The USER shall be the sole bearer of the risks inherent in the use of the HUETTINGER FREEWARE.

## 7. EXCLUSION OF LIABILITY

Any liability by HUETTINGER for compensation for damages due to the use of the HUETTINGER FREEWARE is excluded – irrespective of the legal grounds. HUETTINGER in particular is not liable for the costs of replacement products or services or for any extraordinary, incurred, indirect or resulting costs or damages (including restrictions for damages caused by loss of earnings, production/business losses, production disruptions/failures or loss of information) which arise or arose from a violation of these Licensing Terms and Conditions, the use of HUETTINGER FREEWARE or any inability to use the HUETTINGER FREEWARE.

The aforementioned exclusion of liability is not applicable in the event of wilful intent on the part of HUETTINGER.

## 8. DOCUMENTATION AND EXAMPLES

HUETTINGER accepts no liability whatsoever for any technical inaccuracies, printing errors or for damages arising from using the information provided in the documents and/or examples.

The aforementioned exclusion of liability is not applicable in the event of wilful intent on the part of HUETTINGER.

### 9. SOFTWARE UPDATES

This License does not guarantee the USER any rights to software updates for HUETTINGER FREEWARE or other support services.

## 10. USE OF DATA

HUETTINGER may collect and analyse usage and process data in order to better adapt future applications to the needs of USERS and to improve the HUETTINGER FREEWARE.

## 11. APPLICABLE LAW AND VENUE

The Licensing Agreement is subject to Polish law. The place of jurisdiction is the place where HUETTINGER has its registered offices. HUETTINGER reserves the right to file charges at any other permitted place of jurisdiction.

## 12. SEVERABILITY CLAUSE

If any provision of this Agreement should be ineffective, in whole or in part, or should it lose its legal effectiveness at a later date, this shall not affect the validity of the remaining provisions. Statutory regulations shall take the place of the ineffective provision.



# 10. Scope of delivery

# Contents of the box:

- TruPlasma Highpulse power supply
- Dummy plug for analog control socket (interlock removal)
- Output terminals cover
- Mains terminals cover
- Quick connect water pipe adaptors (2 pieces)
- Inlet air pipe adaptor with stopper
- Lifting eyes (4 pieces)
- User Manual
- Final Quality Report
- CD (software and manual)





TruPlasma Highpulse power supply is delivered in ready-to-use condition.

Device is designed to operate correctly when all connections and installation procedures are followed in accordance with user manual. Default settings should assure proper behavior of device in the most commonly used system configurations.



Nevertheless, it would be useful to learn as much as possible about maintenance and operation principles before proceeding with startup. A full understanding of these system operating principles will help user to obtain the most useful information from controller's display as well as understand behavior of the entire power supply. Introducing any changes to device's settings requires full knowledge of system (and also the password).